Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shabana, A.A.: Flexible multibody dynamics review of past and recent development. Multibody Syst. Dyn. 1, 189–222 (1997)
Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)
Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. J. Mech. Des. 122, 498–507 (2000)
Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)
García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)
Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 287–306 (2008)
Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)
Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2009)
Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–47 (2011)
He, J., Lilley, C.M.: The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44, 395–403 (2009)
Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation plate problem. Int. J. Numer. Methods Eng. 40, 2775–2790 (1997)
Mikkolaa, A.M., Shabana, A.A.: Non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)
Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005)
Gruttmann, F., Wagner, W., Meyer, L., Wriggers, P.: A nonlinear composite shell element with continuous interlaminar shear stresses. Comput. Mech. 13, 175–188 (1993)
Kremer, J.M., Shabana, A.A., Widera, G.E.O.: Large reference displacement analysis of composite plates part I: finite element formulation. Int. J. Numer. Methods Eng. 36, 1–16 (1993)
Kremer, J.M., Shabana, A.A., Widera, G.E.O.: Large reference displacement analysis of composite plates part II: computer implementation. Int. J. Numer. Methods Eng. 36, 17–42 (1993)
Madenci, E., Barut, A.: Dynamic response of thin composite shells experiencing nonlinear elastic deformances coupling with large and rapid overall motions. Int. J. Numer. Methods Eng. 39, 2695–2723 (1996)
Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Flexible multibody systems models using composite materials components. Multibody Syst. Dyn. 12, 385–405 (2004)
Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195, 6860–6873 (2005)
Ambrosio, J.A.C., Neto, M.A., Leal, R.P.: Optimization of a complex flexible multibody systems with composite materials. Multibody Syst. Dyn. 18, 117–144 (2007)
Garcia-Callejo, D., Mayo, J., Escalona, J.L., Dominguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)
Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Proceedings of the Multibody Dynamics Eccomas thematic Conference, Madrid (2005)
Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)
Bischof, C.H., Bucker, H.M., Naumann, U., Hovland, P., Utke, J.: Advances in Automatic Differentiation. Springer, Heidelberg (2008)
García De Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. Springer, New York (1994)
García De Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15–33 (2007)
García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid–flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008)
Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)
Bathe, K.J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)
Lim, J.H., Yim, H.J., Lim, S.H., Park, T.: A study on numerical solution method for efficient dynamic analysis of constrained multibody systems. J. Mech. Sci. Technol. 22, 714–721 (2008)
Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of 24th National Conference ACM, pp. 157–172 (1969)
Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education, Boston (2004)
Wriggers, P., Boersma, A.: A parallel algebraic multigrid solver for problems in solid mechanics discretisized by finite elements. Comput. Struct. 69, 129–137 (1998)
Duan, S., Anderson, K.S.: Parallel implementation of a low order algorithm for dynamics of multibody systems on a distributed memory computing system. Eng. Comput. 16, 96–108 (2000)
Malczyk, P., Fraczek, J.: Cluster computing of mechanisms dynamics using recursive formulation. Multibody Syst. Dyn. 20, 177–196 (2008)
Bauchau, O.A.: Parallel computation approaches for flexible multibody dynamic simulations. J. Franklin Inst. 347, 53–68 (2010)
Gonzalez, F., Luaces, A., Lugris, U., Gonzalez, M.: Non-intrusive parallelization of multibody system dynamic simulations. Comput. Mech. 44, 493–504 (2009)
Kollar, L.P., Spriner, G.S.: Mechanics of Composite Structures. Cambridge University Press, Cambridge (2003)
Arnold, M., Brüls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)
George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)
Chung, J., Hulbert, G.: A time integer algorithm for structure dynamics with improved numerical dissipation: The generalized-a method. J. Appl. Mech. 60, 371–375 (1993)
Hermanns, M.: Parallel programming in Fortran 95 using OpenMP. http://www.openmp.org/presentations/miguel/F95_OpenMPv1_v2.pdf (2002)
Anantharaman, M.: The dynamic analysis of flexible mechanisms using finite element methods. Dissertation, University of Stuttgart (1987)