Dynamical systems and models for reversals of the earth's magnetic field

D. R. J. Chillingworth1, P. J. Holmes2
1Department of Mathematics, Southampton University, Southampton, England
2Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, USA

Tóm tắt

We give an elementary introduction to some ideas and methods in the qualitative theory of differentiable dynamical systems, emphasizing the geometrical description of certain simple bifurcations. As an example of the use of such methods we review two models for the reversal phenomenon exhibited by the earth's magnetic field. The second model displays surprisingly rich dynamical behavior that has only recently been studied in detail. In closing we show that recent work on periodically forced weakly dissipative systems occurring as models of magneto-elastic interactions may be relevant to the geomagnetic reversal question.

Tài liệu tham khảo

Anosov, D. V., 1962, Roughness of geodesic flows on closed Riemannian manifolds of negative curvature: Soviet Math. Dokl., v. 3, pp. 1068–1070. Bröcker, Th. and Lander, L. C., 1975, Differentiable germs and catastrophes: L.M.S. Lecture Notes Series, v. 17, Cambridge Univ. Press. Bullard, E. C., 1955, The stability of a homopolar dynamo: Proc. Cambridge Philos. Soc., v. 51, pp. 744–760. Bullard, E. C., 1978, The disk dynamo: topics in nonlinear dynamics, a tribute to Sir Edward Bullard (S. Jorna, ed.) American Institute of Physics Conference Proceedings No. 46, pp. 373–389. Chillingworth, D. R. J., 1975, Elementary catastrophe theory: Bull. Inst. Math. Appl., v. 11, p. 155–159. Chillingworth, D. R. J., 1976, Differential topology with a view to applications: Research Notes in Mathematics No. 9, Pitman, London. Chillingworth, D. R. J. and Furness, P. M. D., 1975, Reversals of the earth's magnetic field,in Dynamical systems—Warwick 1974: A. K. Manning, ed., Lecture Notes in Mathematics 468, Springer-Verlag, Berlin/Heidelberg/New York. Coddington, E. and Levinson, N., 1955, Theory of ordinary differential equations: McGraw-Hill, New York. Cook, A. E. and Roberts, P. H., 1970, The Rikitake two-disc dynamo system: Proc. Cambridge Philos. Soc., v. 68, pp. 547–569. Cox, A. J., 1975, The frequency of geomagnetic reversals and the symmetry of the nondipole field: Rev. Geophys. Space Phys., v. 13, pp. 35–51. Cox, A. J., 1968, Lengths of geomagnetic polarity intervals: J. Geophys. Res., v. 73, pp. 3247–3260. Golubitsky, M., 1978, An introduction to catastrophe theory and its applications, SIAM Review, v. 20, pp. 352–387. Guckenheimer, J., 1976, A strange, strange attractor,in Marsden, J. E. and McCracken, M., The Hopf bifurcation and its applications: Applied Math. Sciences, v. 19, Springer-Verlag, New York. Guckenheimer, J. and Williams, R. F., 1978, Structural stability of the Lorenz attractor (to appear). Hirsch, M. W. and Smale, S., 1974, Differential equations, dynamical systems, and linear algebra: Academic Press, New York. Holmes, P. J., 1977, ‘Strange’ phenomena in dynamical systems and their physical implications: Appl. Math. Modelling, v. 1, pp. 362–366. Holmes, P. J., 1979a. Global bifurcations and chaos in the forced oscillations of buckled structures, Proc. 1978 IEEE conference on decision and control, Jan. 10–12, 1979; San Diego, paper WA7. Holmes, P. J., 1979b. A nonlinear oscillator with a strange attractor: Phil. Trans. Roy. Soc. Lond. Series A, v. 292, n. 1394, pp. 419–448. Holmes, P. J., 1980. Averaging and chaotic motions in forced oscillations: SIAM J. Appl. Math (in press). Holmes, P. J. and Moon, F. C., 1979, A magneto-elastic strange attractor, J. Sound Vibration, v. 65, n. 2, pp. 275–296. Iooss, G. and Lozi, R., 1978, Convection entre deux plaques planes en rotation, et effet dynamo résultant d'une bifurcation secondaire. J. Mécanique, 16(5), pp. 675–703. Lorenz, E. N., 1963, Deterministic nonperiodic flow: J. Atmospheric Sci., v. 20, pp. 130–141. Lu, Y.-C., 1977, Singularity theory and an introduction to catastrophe theory: Springer-Verlag, New York. Marsden, J. E. and McCracken, M., 1976, The Hopf bifurcation and its applications: Appl. Math. Sci., v. 19, Springer-Verlag, New York. Poincaré, H., 1881, Mémoire sur les courbes définies par une équation différentielle: J. Math., v. 7, pp. 375–442. Poston, T. and Stewart, I. N., 1976, Taylor expansions and catastrophes: Research notes in mathematics No. 7, Pitman, London. Poston, T. and Stewart, I. N., 1978, Catastrophe theory and its applications: Pitman, London. Robbins, K. A., 1976, A moment equation description of magnetic reversals in the earth: Proc. Natl. Acad. Sci. U.S.A., v. 73, pp. 4297–4301. Robbins, K. A., 1977, A new approach to subcritical instability and turbulent transitions in a simple dynamo: Math. Proc. Camb. Phil. Soc., v. 82, pp. 309–325. Ruelle, D. and Takens, F., 1971, On the nature of turbulence: Comm. Math. Phys., v. 20, pp. 167–192; v. 23, p. 343–344. Smale, S., 1967, Differentiable dynamical systems: Bull. Amer. Math. Soc., v. 73, pp. 747–817. Sussmann, H. J., 1975, Catastrophe theory: Synthèse, v. 31, pp. 229–270. Thom, R., 1975, Structural stability and morphogenesis: Benjamin, Reading, Mass. Wassermann, G., 1974, Stability of unfoldings: Lecture notes in mathematics 393, Springer-Verlag, Berlin/Heidelberg/New York. Williams, R. F., 1976, The structure of Lorenz attractors: Northwestern University, preprint. Zeeman, E. C., 1976, Catastrophe theory: Sci. Amer., v. 234, pp. 65–83. Zeeman, E. C., 1977, Catastrophe theory: selected papers 1972–1977: Addison-Wesley, Reading, Mass.