Dynamical behavior of damaged railway sleeper subjected to moving loads: Parametric study of crack properties

Thuy-Duong Le1, Le-Hung Tran2
1\(^1\) Faculty of Civil Engineering, VNU University of Engineering and Technology, 144 Xuan Thuy street, Hanoi, 100000, Vietnam
2\(^2\) EMGCU/MAST, Université Gustave Eiffel, 14-20 boulevard Newton, Champs-sur-Marne, 77420, France

Tóm tắt

This study investigates the dynamic responses of cracked beams placed on a visco-elastic foundation and subjected to moving loads. Utilizing the Euler–Bernoulli beam model, the behavior of the beams is characterized, accounting for multiple open cracks on one side with varying depths. Through the application of Fourier transform techniques and Green's function, the dynamic response of the beam is analytically determined in the frequency domain. Furthermore, an analytical model for railway sleepers is developed by integrating them with a periodically supported beam model. This integrated model enables efficient computation of the dynamic behavior of damaged sleepers, where cracks are present at specific locations. Additionally, a calculation model utilizing the finite element method is established and compared with the analytical model. The parametric study shows the influence of crack properties on the dynamic beam responses.

Từ khóa

#cracked beam #railway sleeper #visco-elastic foundation #Euler–Bernoulli beam

Tài liệu tham khảo

<p>[1] E. Winkler. <em>Vorträge über Eisenbahnbau</em>, Vol. 11. H. Dominicus, (1878).</p>

<p>[2] P. Pasternak. Basis of a new method for the calculation of structures on elastic foundation using two bed constants. <em>Gosstroiizdat</em>, (1954). (in Russian).</p>

<p>[3] V. Vlasov and N. Leontiev. Technical theory of analysis of foundations on an elastic base. <em>MISI Sbornik Trudov</em>, <strong>14</strong>, (1956).</p>

<p>[4] A. D. Kerr. Elastic and viscoelastic foundation models. <em>Journal of Applied Mechanics</em>, <strong>81</strong>, (1964), pp. 491–498. <a href="https://doi.org/10.1115/1.3629667">https://doi.org/10.1115/1.3629667</a>.</p>

<p>[5] G. D. Zhang and B. Z. Guo. On the spectrum of Euler–Bernoulli beam equation with Kelvin–Voigt damping. <em>Journal of Mathematical Analysis and Applications</em>, <strong>374</strong>, (2011), pp. 210–229. <a href="https://doi.org/10.1016/j.jmaa.2010.08.070">https://doi.org/10.1016/j.jmaa.2010.08.070</a>.</p>

<p>[6] F. Hassine. Logarithmic stabilization of the Euler–Bernoulli transmission plate equation with locally distributed Kelvin–Voigt damping. <em>Journal of Mathematical Analysis and Applications</em>, <strong>455</strong>, (2017), pp. 1765–1782. <a href="https://doi.org/10.1016/j.jmaa.2017.06.068">https://doi.org/10.1016/j.jmaa.2017.06.068</a>.</p>

<p>[7] M. Javadi and M. Rahmanian. Nonlinear vibration of fractional Kelvin–Voigt viscoelastic beam on nonlinear elastic foundation. <em>Communications in Nonlinear Science and Numerical Simulation</em>, <strong>98</strong>, (2021). <a href="https://doi.org/10.1016/j.cnsns.2021.105784">https://doi.org/10.1016/j.cnsns.2021.105784</a>.</p>

<p>[8] Y. Lei, S. Adhikari, and M. I. Friswell. Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. <em>International Journal of Engineering Science</em>, <strong>66–67</strong>, (2013), pp. 1– 13. <a href="https://doi.org/10.1016/j.ijengsci.2013.02.004">https://doi.org/10.1016/j.ijengsci.2013.02.004</a>.</p>

<p>[9] W. R. Chen. Bending vibration of axially loaded Timoshenko beams with locally distributed Kelvin–Voigt damping. <em>Journal of Sound and Vibration</em>, <strong>330</strong>, (2011), pp. 3040–3056. <a href="https://doi.org/10.1016/j.jsv.2011.01.015">https://doi.org/10.1016/j.jsv.2011.01.015</a>.</p>

<p>[10] W. R. Chen. Vibration analysis of twisted Timoshenko beams with internal Kelvin–Voigt damping. <em>Procedia Engineering</em>, <strong>67</strong>, (2013), pp. 525–532. <a href="https://doi.org/10.1016/j.proeng.2013.12.053">https://doi.org/10.1016/j.proeng.2013.12.053</a>.</p>

<p>[11] W. R. Chen. Effect of local Kelvin–Voigt damping on eigenfrequencies of cantilevered twisted Timoshenko beams. <em>Procedia Engineering</em>, <strong>79</strong>, (2014), pp. 160–165. <a href="https://doi.org/10.1016/j.proeng.2014.06.325">https://doi.org/10.1016/j.proeng.2014.06.325</a>.</p>

<p>[12] W. R. Chen. Parametric studies on bending vibration of axially-loaded twisted Timoshenko beams with locally distributed Kelvin–Voigt damping. <em>International Journal of Mechanical Sciences</em>, <strong>88</strong>, (2014), pp. 61–70. <a href="https://doi.org/10.1016/j.ijmecsci.2014.07.006">https://doi.org/10.1016/j.ijmecsci.2014.07.006</a>.</p>

<p>[13] P. S. P. Zhang and H. Qing. Stress-driven local/nonlocal mixture model for buckling and free vibration of FG sandwich Timoshenko beams resting on a nonlocal elastic foundation. <em>Composite Structures</em>, <strong>289</strong>, (2022). <a href="https://doi.org/10.1016/j.compstruct.2022.115473">https://doi.org/10.1016/j.compstruct.2022.115473</a>.</p>

<p>[14] P. S. P. Zhang and H. Qing. Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation. <em>Applied Mathematics and Mechanics</em>, <strong>44</strong>, (2023), pp. 89–108. <a href="https://doi.org/10.1007/s10483-023-2948-9">https://doi.org/10.1007/s10483-023-2948-</a><a href="https://doi.org/10.1007/s10483-023-2948-9">9</a>.</p>

<p>[15] L. Fryba. <em>Vibration of solids and structures under moving loads</em>. Springer Netherlands, (1972). <a href="https://doi.org/10.1007/978-94-011-9685-7">https://doi.org/10.1007/978-94-011-9685-7</a>.</p>

<p>[16] V. H. Nguyen and D. Duhamel. Finite element procedures for nonlinear structures in moving coordinates. part 1: Infinite bar under moving axial loads. <em>Computers and Structures</em>, <strong>84</strong>, (2006), pp. 1368–1380. <a href="https://doi.org/10.1016/j.compstruc.2006.02.018">https://doi.org/10.1016/j.compstruc.2006.02.018</a>.</p>

<p>[17] V. H. Nguyen and D. Duhamel. Finite element procedures for nonlinear structures in moving coordinates. Part II: Infinite beam under moving harmonic loads. <em>Computers and Structures</em>, <strong>86</strong>, (2008), pp. 2056–2063. <a href="https://doi.org/10.1016/j.compstruc.2008.04.010">https://doi.org/10.1016/j.compstruc.2008.04.010</a>.</p>

<p>[18] P. C. Jorge, F. Simoes, and A. P. da Costa. Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads. <em>Computers and Structures</em>, <strong>148</strong>, (2014), pp. 26–34. <a href="https://doi.org/10.1016/j.compstruc.2014.11.002">https://doi.org/10.1016/j.compstruc.2014.11.002</a>.</p>

<p>[19] L. H. Tran, T. Hoang, D. Duhamel, G. Foret, S. Messad, and A. Loac. Analytical model of the dynamics of railway sleeper. In <em>Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015)</em>, Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, COMPDYN 2017, (2017), pp. 3937–3948. <a href="https://doi.org/10.7712/120117.5695.18372">https://doi.org/10.7712/120117.5695.18372</a>.</p>

<p>[20] L. H. Tran, T. Hoang, G. Foret, D. Duhamel, S. Messad, and A. Loaec. A fast analytic method to calculate the dynamic response of railways sleepers. <em>Journal of Vibration and Acoustics</em>, <strong>141</strong>, (2018), pp. 1368–1380. <a href="https://doi.org/10.1115/1.4040392">https://doi.org/10.1115/1.4040392</a>.</p>

<p>[21] L. H. Tran, T. Hoang, G. Foret, D. Duhamel, S. Messad, and A. Loaec. Influence of non-homogeneous foundations on the dynamic responses of railway sleepers. <em>International Journal of Structural Stability and Dynamics</em>, <strong>21</strong>, (2021). <a href="https://doi.org/10.1142/s0219455421500024">https://doi.org/10.1142/s0219455421500024</a>.</p>

<p>[22] L. H. Tran, K. Le-Nguyen, and T. Hoang. A comparison of beam models for the dynamics of railway sleepers. <em>International Journal of Rail Transportation</em>, <strong>11</strong>, (2022), pp. 92–110. <a href="https://doi.org/10.1080/23248378.2022.2034062">https://doi.org/10.1080/23248378.2022.2034062</a>.</p>

<p>[23] L.-H. Tran and K. Le-Nguyen. Calculation of dynamic responses of a cracked beam on visco-elastic foundation subjected to moving loads, and its application to a railway track model. <em>International Journal of Applied Mechanics</em>, <strong>15</strong>, (2023). <a href="https://doi.org/10.1142/s1758825123500266">https://doi.org/10.1142/s1758825123500266</a>.</p>

<p>[24] L.-H. Tran, T.-M. Duong, T. Hoang, G. Foret, and D. Duhamel. An analytical model to calculate the forced vertical vibrations of two rails subjected to the dynamic loads of ballasted railway track. <em>Structures</em>, <strong>68</strong>, (2024). <a href="https://doi.org/10.1016/j.istruc.2024.107203">https://doi.org/10.1016/j.istruc.2024.107203</a>.</p>

<p>[25] L.-H. Tran, T.-M. Duong, B. Claudet, K. Le-Nguyen, A. Nordborg, and F. Schmidt. Comparative analysis of beam models for vertical rail vibrations under dynamic forces. <em>European Journal of Mechanics - A/Solids</em>, <strong>110</strong>, (2025). <a href="https://doi.org/10.1016/j.euromechsol.2024.105497">https://doi.org/10.1016/j.euromechsol.2024.105497</a>.</p>

<p>[26] P. Fieguth and S. Sinha. Automated analysis and detection of cracks in underground scanned pipes. In <em>Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348)</em>, IEEE, Vol. 4 of <em>ICIP-99</em>, (1999), pp. 395–399. <a href="https://doi.org/10.1109/icip.1999.819622">https://doi.org/10.1109/icip.1999.819622</a>.</p>

<p>[27] Q. Feng, Q. Kong, L. Huo, and G. Song. Crack detection and leakage monitoring on reinforced concrete pipe. <em>Smart Materials and Structures</em>, <strong>24</strong>, (2015). <a href="https://doi.org/10.1088/0964-1726/24/11/115020">https://doi.org/10.1088/0964-</a> <a href="https://doi.org/10.1088/0964-1726/24/11/115020">1726/24/11/115020</a>.</p>

<p>[28] R. D. Adams, P. Cawley, C. J. Pye, and B. J. Stone. A vibration technique for non-destructively assessing the integrity of structures. <em>Journal of Mechanical Engineering Science</em>, <strong>20</strong>, (2), (1978), pp. 93–100. <a href="https://doi.org/10.1243/jmes_jour_1978_020_016_02">https://doi.org/10.1243/jmes jour 1978 020 016 02</a>.</p>

<p>[29] H. J. Petroski. Simple static and dynamic models for the cracked elastic beam. <em>International Journal of Fracture</em>, <strong>17</strong>, (1981), pp. R71–R76. <a href="https://doi.org/10.1007/bf00036201">https://doi.org/10.1007/bf00036201</a>.</p>

<p>[30] J. Lemaitre. <em>Handbook of materials behavior models</em>, Vol. 1-3. Academic Press, (2001).</p>

<p>[31] N. T. Khiem and T. V. Lien. A simplified method for natural frequency analysis of a multiple cracked beam. <em>Journal of Sound and Vibration</em>, <strong>245</strong>, (2001), pp. 737–751. <a href="https://doi.org/10.1006/jsvi.2001.3585">https://doi.org/10.1006/jsvi.2001.3585</a>.</p>

<p>[32] S. P. Lele and S. K. Maiti. Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. <em>Journal of Sound and Vibration</em>, <strong>257</strong>, (2002), pp. 559–583. <a href="https://doi.org/10.1006/jsvi.2002.5059">https://doi.org/10.1006/jsvi.2002.5059</a>.</p>

<p>[33] E. Viola, L. Federici, and L. Nobile. Detection of crack location using cracked beam element method for structural analysis. <em>Theoretical and Applied Fracture Mechanics</em>, <strong>36</strong>, (2001), pp. 23– 35. <a href="https://doi.org/10.1016/s0167-8442(01)00053-2">https://doi.org/10.1016/s0167-8442(01)00053-2</a>.</p>

<p>[34] S. H. S. Carneiro and D. J. Inman. Continuous model for the transverse vibration of cracked Timoshenko beams. <em>Journal of Vibration and Acoustics</em>, <strong>124</strong>, (2), (2002), pp. 310–320. <a href="https://doi.org/10.1115/1.1452744">https://doi.org/10.1115/1.1452744</a>.</p>

<p>[35] J. L. Hearndon, G. P. Potirniche, D. Parker, P. M. Cuevas, H. Rinehart, P. T. Wang, and M. F. Horstemeyer. Monitoring structural damage of components using an effective modulus approach. <em>Theoretical and Applied Fracture Mechanics</em>, <strong>50</strong>, (2008), pp. 23–29. <a href="https://doi.org/10.1016/j.tafmec.2008.04.002">https://doi.org/10.1016/j.tafmec.2008.04.002</a>.</p>

<p>[36] A. C. Batihan and F. S. Kadioglu. Vibration analysis of a racked beam on an elastic foundation. <em>International Journal of Structural Stability and Dynamics</em>, <strong>16</strong>, (05), (2016). <a href="https://doi.org/10.1142/s0219455415500066">https://doi.org/10.1142/s0219455415500066</a>.</p>

<p>[37] H. Darban, R. Luciano, and M. Basista. Free transverse vibrations of nanobeams with multiple cracks. <em>International Journal of Engineering Science</em>, <strong>177</strong>, (2022). <a href="https://doi.org/10.1016/j.ijengsci.2022.103703">https://doi.org/10.1016/j.ijengsci.2022.103703</a>.</p>

<p>[38] J. A. Loya, L. Rubio, and J. Fernández-Sáez. Natural frequencies for bending vibrations of Timoshenko cracked beams. <em>Journal of Sound and Vibration</em>, <strong>290</strong>, (2006), pp. 640–653. <a href="https://doi.org/10.1016/j.jsv.2005.04.005">https://doi.org/10.1016/j.jsv.2005.04.005</a>.</p>

<p>[39] J. A. Loya, J. Aranda-Ruiz, and R. Zaera. Natural frequencies of vibration in cracked Timoshenko beams within an elastic medium. <em>Theoretical and Applied Fracture Mechanics</em>, <strong>118</strong>, (2022). <a href="https://doi.org/10.1016/j.tafmec.2022.103257">https://doi.org/10.1016/j.tafmec.2022.103257</a>.</p>

<p>[40] T.-S. Pham, T. Hoang, D. Duhamel, G. Foreˆt, F. Schmidt, F.-B. Cartiaux, and V. Le Corvec. Dynamic response of a cracked multi-span continuous beam subjected to a moving multi-axle vehicle load. In <em>International Conference on Structural Health Monitoring of Intelligent Infrastructure</em>, (2021).</p>

<p>[41] T. Yan, S. Kitipornchai, J. Yang, and X. Q. He. Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. <em>Composite Structures</em>, <strong>93</strong>, (2011), pp. 2992–3001. <a href="https://doi.org/10.1016/j.compstruct.2011.05.003">https://doi.org/10.1016/j.compstruct.2011.05.003</a>.</p>

<p>[42] M. Rezaiee-Pajand and N. Gharaei-Moghaddam. A force-based rectangular cracked element. <em>International Journal of Applied Mechanics</em>, <strong>13</strong>, (2021). <a href="https://doi.org/10.1142/s1758825121500472">https://doi.org/10.1142/s1758825121500472</a>.</p>

<p>[43] S. Zheng, R. Huang, R. Lin, and Z. Liu. A phase field solution for modelling hyperelastic material and hydrogel fracture in ABAQUS. <em>Engineering Fracture Mechanics</em>, <strong>276</strong>, (2022). <a href="https://doi.org/10.1016/j.engfracmech.2022.108894">https://doi.org/10.1016/j.engfracmech.2022.108894</a>.</p>

<p>[44] T. Hoang, D. Duhamel, G. Foret, H. Yin, P. Joyez, and R. Caby. Calculation of force distribution for a periodically supported beam subjected to moving loads. <em>Journal of Sound and Vibration</em>, <strong>388</strong>, (2017), pp. 327–338. <a href="https://doi.org/10.1016/j.jsv.2016.10.031">https://doi.org/10.1016/j.jsv.2016.10.031</a>.</p>

<p>[45] T. S. Azoh, W. Nzie, B. Djeumako, and B. S. Fotsing. Modeling of train track vibrations for maintenance perspectives: Application. <em>European Scientific Journal</em>, <strong>10</strong>, (21), (2014), pp. 260–275.</p>

<p>[46] E. L. Fichoux. <em>Presentation et utilisation de Cast3M</em>. Support of CEA, (2011).</p>

<p>[47] J. Fernandez-Saez, L. Rubio, and C. Navarro. Approximate calculation of the fundamental frequency for bending vibrations of cracked beams. <em>Journal of Sound and Vibration</em>, <strong>225</strong>, (1999), pp. 345–352. <a href="https://doi.org/10.1006/jsvi.1999.2251">https://doi.org/10.1006/jsvi.1999.2251</a>.</p>

<p>[48] T. G. Chondros and A. D. Dimarogonas. Vibration of a cracked cantilever beam. <em>Journal of Vibration and Acoustics</em>, <strong>120</strong>, (1998), pp. 742–746. <a href="https://doi.org/10.1115/1.2893892">https://doi.org/10.1115/1.2893892</a>.</p>

<p>[49] X. Zhao, Y. R. Zhao, X. Z. Gao, X. Y. Li, and Y. H. Li. Greens functions for the forced vibrations of cracked Euler-Bernoulli beams. <em>Mechanical Systems and Signal Processing</em>, <strong>68–69</strong>, (2016), pp. 155–175. <a href="https://doi.org/10.1016/j.ymssp.2015.06.023">https://doi.org/10.1016/j.ymssp.2015.06.023</a>.</p>