Dynamical Equilibrium between Brønsted and Lewis Sites in Zeolites: Framework‐Associated Octahedral Aluminum

Angewandte Chemie - Tập 135 Số 31 - Trang n/a-n/a - 2023
Mengting Jin1, Manoj Ravi1, Chen Lei1, Christopher J. Heard1, Federico Brivio1, Zdeněk Tošner1, Lukáš Grajciar1, Jeroen A. Bokhoven1, Petr Nachtigall1
1Current address: Department of Molecular Chemistry and Materials ScienceWeizmann Institute of Science Rehovot76100Israel

Tóm tắt

Abstract While the structures of Brønsted acid sites (BAS) in zeolites are well understood, those of Lewis acid sites (LAS) remain an active area of investigation. Under hydrated conditions, the reversible formation of framework‐associated octahedral aluminum has been observed in zeolites in the acidic form. However, the structure and formation mechanisms are currently unknown. In this work, combined experimental 27Al NMR spectroscopy and computational data reveal for the first time the details of the zeolite framework‐associated octahedral aluminium. The octahedral LAS site becomes kinetically allowed and thermodynamically stable under wet conditions in the presence of multiple nearby BAS sites. The critical condition for the existence of such octahedral LAS appears to be the availability of three protons: at lower proton concentration, either by increasing the Si/Al or by ion‐exchange to non‐acidic form, the tetrahedral BAS becomes thermodynamically more stable. This work resolves the question about the nature and reversibility of framework‐associated octahedral aluminium in zeolites.

Từ khóa

#Ab Initio Molecular Dynamics #Octahedral Aluminum #Solid-State NMR #Zeolite Hydrolysis #Zeolites

Tài liệu tham khảo

B. M. Weckhuysen, J. Yu, Chem. Soc. Rev. 2015, 44, 7022–7024. W. Haag, R. Lago, P. Weisz, Nature 1984, 309, 589–591. C. Chizallet, ACS Catal. 2020, 10, 5579–5601. K. Chen, Z. Gan, S. Horstmeier, J. L. White, J. Am. Chem. Soc. 2021, 143, 6669–6680; T. K. Phung, G. Busca, Appl. Catal. A 2015, 504, 151–157; S. Xin, Q. Wang, J. Xu, Y. Chu, P. Wang, N. Feng, G. Qi, J. Trebosc, O. Lafon, W. Fan, F. Deng, Chem. Sci. 2019, 10, 10159–10169; D. Coster, A. L. Blumenfeld, J. J. Fripiat, J. Chem. Phys. 1994, 98, 6201–6211; P. Y. Dapsens, C. Mondelli, J. Pérez-Ramírez, ChemSusChem 2013, 6, 831–839; G. L. Woolery, G. H. Kuehl, H. C. Timken, A. W. Chester, J. C. Vartuli, Zeolites 1997, 19, 288–296. U. Lohse, E. Löffler, M. Hunger, J. Stöckner, V. Patzelova, Zeolites 1987, 7, 11–13; S. M. T. Almutairi, B. Mezari, G. A. Filonenko, P. C. Magusin, M. S. Rigutto, E. A. Pidko, E. J. Hensen, ChemCatChem 2013, 5, 452–466; C. Liu, G. Li, E. J. M. Hensen, E. A. Pidko, ACS Catal. 2015, 5, 7024–7033; J. Holzinger, P. Beato, L. F. Lundegaard, J. Skibsted, J. Phys. Chem. C 2018, 122, 15595–15613; M. C. Silaghi, C. Chizallet, J. Sauer, P. Raybaud, J. Catal. 2016, 339, 242–255; X. Yi, K. Liu, W. Chen, J. Li, S. Xu, C. Li, Y. Xiao, H. Liu, X. Guo, S.-B. Liu, A. Zheng, J. Am. Chem. Soc. 2018, 140, 10764–10774. E. Bourgeat-Lami, P. Massiani, F. Di Renzo, P. Espiau, F. Fajula, T. Des Courières, Appl. Catal. 1991, 72, 139–152; A. Omegna, J. A. van Bokhoven, R. Prins, J. Phys. Chem. B 2003, 107, 8854–8860; J. A. van Bokhoven, H. Sambe, D. Ramaker, D. Koningsberger, J. Phys. Chem. B 1999, 103, 7557–7564; A. Abraham, S.-H. Lee, C.-H. Shin, S. B. Hong, R. Prins, J. A. van Bokhoven, Phys. Chem. Chem. Phys. 2004, 6, 3031–3036; M. Ravi, V. L. Sushkevich, J. A. van Bokhoven, J. Phys. Chem. C 2019, 123, 15139–15144; M. Ravi, V. L. Sushkevich, J. A. van Bokhoven, Nat. Mater. 2020, 19, 1047–1056; M. Ravi, V. L. Sushkevich, J. A. van Bokhoven, Chem. Sci. 2021, 12, 4094–4103. J. Jiao, J. Kanellopoulos, W. Wang, S. S. Ray, H. Foerster, D. Freude, M. Hunger, Phys. Chem. Chem. Phys. 2005, 7, 3221–3226. C. Baerlocher, L. B. McCusker, “Database of Zeolite Structures,” http://www.iza-structure.org/databases. U. Olsbye, S. Svelle, K. Lillerud, Z. Wei, Y. Chen, J. Li, J. Wang, W. Fan, Chem. Soc. Rev. 2015, 44, 7155–7176; A. M. Beale, F. Gao, I. Lezcano-Gonzalez, C. H. F. Peden, J. Szanyi, Chem. Soc. Rev. 2015, 44, 7371–7405. C. J. Heard, L. Grajciar, C. M. Rice, S. M. Pugh, P. Nachtigall, S. E. Ashbrook, R. E. Morris, Nat. Commun. 2019, 10, 4690; M. Jin, O. Veselý, C. Heard, M. Kubů, P. Nachtigal, J. Čejka, L. Grajciar, J. Phys. Chem. C 2021, 125, 23744–23757. J. R. Di Iorio, R. Gounder, Chem. Mater. 2016, 28, 2236–2247. A. Abraham, S. B. Hong, R. Prins, J. A. van Bokhoven, Studies in Surface Science and Catalysis, Vol. 158 (Eds.: J. Čejka, N. Žilková, P. Nachtigall), Elsevier, Amsterdam, 2005, pp. 679–686. C. J. Heard, L. Grajciar, P. Nachtigall, Chem. Sci. 2019, 10, 5705–5711; S. M. Pugh, P. A. Wright, D. J. Law, N. Thompson, S. E. Ashbrook, J. Am. Chem. Soc. 2020, 142, 900–906; C. J. Heard, L. Grajciar, F. Uhlík, M. Shamzhy, M. Opanasenko, J. Čejka, P. Nachtigall, Adv. Mater. 2020, 32, 2003264. M. A. Deimund, L. Harrison, J. D. Lunn, Y. Liu, A. Malek, R. Shayib, M. E. Davis, ACS Catal. 2016, 6, 542–550.