Dynamic modification of cut marks by trampling: temporal assessment through the use of mixed-effect regressions and deep learning methods

Marcos Pizarro-Monzo1, Manuel Domı́nguez-Rodrigo1
1IDEA (Institute of Evolution in Africa), University of Alcalá, Covarrubias 36, 28010, Madrid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aggarwal C (2018) Deep learning and neural networks. Springer, New York

Andrews P, Cook J (1985) Natural modifications to bones in a temperate setting. Man 20:675–691

Amadasi A, Camici A, Sironi L, Profumo A, Merli D, Mazzarelli D, Porta D, Duday H, Cattaneo C (2015) The effects of acid and alkaline solutions on cut marks and on the structure of bone: an experimental study on porcine ribs. Legal Med 17:503–508

Behrensmeyer AK, Gordon KD, Yanagi GT (1986) Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319:768–771

Brownlee J (2017) Deep learning with Python. Machine Learning Mastery Publ, Sidney

Brownlee J (2018) Better Deep Learning. Machine Learning Mastery Publ, Sidney

Buduma, N. 2017. Fundamentals of deep learning. O’Reilley Media

Byeon, W., Domínguez-Rodrigo, M., Arampatzis, G., Baquedano, E., Yravedra, J., Maté-González, M.A., Koumoutsakos, P., 2019. Automated identification and deep classification of cut marks on bones and its paleoanthropological implications. J Comput Sci. https://doi.org/10.1016/j.jocs.2019.02.005

Chollet, F., 2017. Deep Learning with Python. Manning Publications Company

Cifuentes-Alcobendas, G., Domínguez-Rodrigo, M. Deep learning and taphonomy: high accuracy in the classification of cut marks made on fleshed and defleshed bones using convolutional neural networks. Sci Rep 9, 18933 (2019) https://doi.org/10.1038/s41598-019-55439-6

Courtenay L, Yravedra J, Huguet R, Ollé A, Maté MA, González-Aguilera D (2019) New taphonomic advances in 3D digitala microscopy: a morpohological characterization of trampling marks. Quat Int (in press)

Domínguez-Rodrigo M, de Juana S, Galán AB, Rodríguez M (2009) A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci 36:2643–2654

Domínguez-Rodrigo M, Saladié P, Cáceres I, Huguet R, Yravedra J, Rodríguez-Hidalgo A, Martín P, Pineda A, Marín J, Gené C, Aramendi J, Cobo-Sánchez L (2017) Use and abuse of cut mark analyses: the Rorschach effect. J Archaeol Sci 86:14–23

Domínguez-Rodrigo, M., (2018). Succesful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology? Archaeological and anthropological sciences, http://doi.org/10.1007/s12520-018-0684-9

Driscoll K, Alcaína J, Egüez N, Mngado X, Fullola JM, Tejero JM (2016) Trampled under foot: a quartz and chert human trampling experiment at the Cova del Parco rock shelter, Spain. Quat Int 424:130–142

Eren MI, Durant AJ, Neudorf C, Haslam M, Shipton C, Bora J, Korisettar R, Petraglia M (2010) Experimental examination of animal trampling effects on artifact movement in dry and water saturated substrates: a test case from South India. J Archaeol Sci 37(12):3010–3021

Fiorillo AR (1984) An experimental study of trampling: implications for the fossil record. In: Bonnichsen R, Sorg MH (eds) Bone Modification. University of Maine Press, Maine, pp 61–72

Gaudzinski-Windheuser S, Kindler L, Rabinovich R, Goren-Inbar N (2010) Testing heterogeneity in faunal assemblages from archaeological sites. Tumbling and trampling experiments at the early-middle Pleistocene site of Gesher Benot Ya’aqov (Israel). J Archaeol Sci 37:3170–3190

Goodfellow I, Bengio Y, Courville A (2015) Deep learning. MIT Press, Cambridge

Hardt, M., Recht, B., Singer, Y., 2015. Train faster, generalize better: stability of stochastic gradient descent. arXiv [cs.LG]

Harris JA, Marean CW, Ogle K, Thompson J (2017) The trajectory of bone surface modification studies in paleoanthropology and a new Bayesian solution to the identification controversy. J Hum Evol 110:69–81

Hijazi, S., Kumar, R., Rowen, C., 2015. Using Convolutional Neural Networks for Image Recognition

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507

Khan S, Rahmani H, Shah SAA, Bennamoun M (2018) A guide to convolutional neural networks for computer vision. Morgan & Claypool Publishers

Kim, D.H., MacKinnon, T., 2018. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol https://doi.org/https://doi.org/10.1016/j.crad.2017.11.015

Kim, P., 2017. Convolutional Neural Network. MATLAB Deep Learning. https://doi.org/10.1007/978-1-4842-2845-6_6

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25. Curran Associates, Inc., pp 1097–1105

Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling: Springer New York

Lu L, Zheng Y, Carneiro G, Yang L (2017) Deep learning and convolutional neural networks for medical image computing: precision medicine. Springer, High Performance and Large-Scale Datasets

Oliver JS (1984) Analogues and site context: bone damages from shield trap cave (24CB91), Carbon County, Montana, USA. In: Bonnichsen R, Sorg MH (eds) Bone Modification. University of Maine Press, Maine, pp 73–98

Olsen SL, Shipman P (1988) Surface modification on bone: trampling versus butchery. J Archaeol Sci 15:535–553

Patterson, J., Gibson, A. 2017. Deep learning. A practitioner’s approach. O’Reilley Media

Pineda A, Cáceres I, Saladié P, Huguet R, Morales JI, Rosas A, Vallverdú J (2019) Tumbling effects on bone surface modifications (BSM): an experimental application on archaeological deposits from the Barranc de la Boella site (Tarragona, Spain). J Archaeol Sci 102:35–47

Pineda A, Saladié P, Vergès JM, Huguet R, Cáceres I, Vallverdú J (2014) Trampling versus cut marks on chemically altered surfaces: an experimental approach and archaeological application at the Barranc de la Boella site (la Canonja, Tarragona, Spain). J Archaeol Sci 50:84–93

Rabinovich, R., Gaudzinski-Windheuser, S., Kindler, L., Goren-Inbar, N., 2012. The Acheulian Site of Gesher Benot Ya‘aqov Volume III: Mammalian Taphonomy. The Assemblages of Layers V-5 and V-6, Vertebrate Paleobiology and Paleoanthropology. Springer, New York

Sejnowski T (2018) The deep learning revolution. MIT Press, Cambridge

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958