Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các mô-đun chức năng động trong các mạng tương tác protein đồng biểu hiện của bệnh cơ tim giãn nở
Tóm tắt
Các mạng phân tử đại diện cho xương sống của hoạt động phân tử trong các tế bào và cung cấp cơ hội để hiểu cơ chế của các bệnh. Trong khi dữ liệu tương tác protein-protein tạo thành các bản đồ mạng tĩnh, việc tích hợp thông tin đồng biểu hiện theo điều kiện cung cấp manh mối cho các đặc điểm động của các mạng này. Bệnh cơ tim giãn nở là nguyên nhân hàng đầu gây ra suy tim. Mặc dù những nghiên cứu trước đây đã xác định các dấu ấn sinh học hoặc mục tiêu trị liệu khả thi cho suy tim, nhưng cơ chế phân tử tiềm ẩn của bệnh cơ tim giãn nở vẫn chưa rõ ràng. Chúng tôi đã phát triển một phương pháp phân tích so sánh dựa trên mạng tích hợp giữa các tương tác protein-protein với các biểu mẫu biểu hiện gen và các chú thích chức năng sinh học để tiết lộ các mô-đun chức năng động trong các trạng thái sinh học khác nhau. Chúng tôi phát hiện rằng các protein trung tâm trong các mạng tương tác protein đồng biểu hiện theo điều kiện có xu hướng biểu hiện khác nhau giữa các trạng thái sinh học. Áp dụng phương pháp này cho một nhóm bệnh nhân suy tim, chúng tôi đã xác định được hai mô-đun chức năng nổi bật từ các mạng tương tác. Động lực học của các mô-đun này giữa các trạng thái bình thường và bệnh lý càng gợi ý về một mô hình phân tử tiềm năng của bệnh cơ tim giãn nở. Chúng tôi đề xuất một khung mới để phân tích các mạng tương tác trong các trạng thái sinh học khác nhau. Nó thành công trong việc tiết lộ các mô-đun mạng liên quan chặt chẽ đến suy tim; quan trọng hơn, động lực mạng này cung cấp những hiểu biết mới về nguyên nhân của bệnh cơ tim giãn nở. Các mô-đun phân tử được tiết lộ có thể được sử dụng làm mục tiêu thuốc tiềm năng và cung cấp những hướng đi mới cho liệu pháp suy tim.
Từ khóa
#bệnh cơ tim giãn nở #tương tác protein #mạng phân tử #mô-đun chức năng #suy timTài liệu tham khảo
Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature. 2004, 430: 88-93. 10.1038/nature02555
Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han JD: A modular network model of aging. Mol Syst Biol. 2007, 3: 147- 10.1038/msb4100189
Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL: Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009, 27: 199-204. 10.1038/nbt.1522
Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007, 3: 140- 10.1038/msb4100180
Camargo A, Azuaje F: Linking gene expression and functional network data in human heart failure. PLoS ONE. 2007, 2: e1347- 10.1371/journal.pone.0001347
Camargo A, Azuaje F: Identification of dilated cardiomyopathy signature genes through gene expression and network data integration. Genomics. 2008, 92: 404-413. 10.1016/j.ygeno.2008.05.007
McMurray JJ, Pfeffer MA: Heart failure. Lancet. 2005, 365: 1877-1889. 10.1016/S0140-6736(05)66621-4
Barth AS, Kuner R, Buness A, Ruschhaupt M, Merk S, Zwermann L, Kaab S, Kreuzer E, Steinbeck G, Mansmann U, et al.: Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. J Am Coll Cardiol. 2006, 48: 1610-1617. 10.1016/j.jacc.2006.07.026
Kaab S, Barth AS, Margerie D, Dugas M, Gebauer M, Zwermann L, Merk S, Pfeufer A, Steinmeyer K, Bleich M, et al.: Global gene expression in human myocardium-oligonucleotide microarray analysis of regional diversity and transcriptional regulation in heart failure. J Mol Med. 2004, 82: 308-316. 10.1007/s00109-004-0527-2
Wittchen F, Suckau L, Witt H, Skurk C, Lassner D, Fechner H, Sipo I, Ungethum U, Ruiz P, Pauschinger M, et al.: Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. J Mol Med. 2007, 85: 257-271. 10.1007/s00109-006-0122-9
Ekman D, Light S, Bjorklund AK, Elofsson A: What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae?. Genome Biol. 2006, 7: R45- 10.1186/gb-2006-7-6-r45
Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005, 21: 3448-3449. 10.1093/bioinformatics/bti551
Kang PM, Izumo S: Apoptosis and heart failure: A critical review of the literature. Circ Res. 2000, 86: 1107-1113.
Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP: Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990, 345: 315-319. 10.1038/345315a0
Li J, Lenferink AEG, Deng Y, Collins C, Cui Q, Purisima EO, O'connor-Mccourt MD, Wang E: Identification of high-quality cancer prognostic markers and metastasis network modules. Nature Communications. 2010, 1: 34-
Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al.: Human Protein Reference Database--2009 update. Nucleic Acids Res. 2009, 37: D767-772. 10.1093/nar/gkn892
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006, 34: D535-539. 10.1093/nar/gkj109
Davies KE, Nowak KJ: Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol. 2006, 7: 762-773. 10.1038/nrm2024
Ervasti JM, Campbell KP: Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991, 66: 1121-1131. 10.1016/0092-8674(91)90035-W
Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, Dreyer WJ, Messina J, Li H, Bowles NE, Towbin JA: Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001, 103: 1256-1263.
Burton EA, Tinsley JM, Holzfeind PJ, Rodrigues NR, Davies KE: A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. Proc Natl Acad Sci USA. 1999, 96: 14025-14030. 10.1073/pnas.96.24.14025
Bostick B, Yue Y, Long C, Duan D: Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ Res. 2008, 102: 121-130. 10.1161/CIRCRESAHA.107.162982
Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K: Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005, 115: 2108-2118. 10.1172/JCI24682
Laustsen PG, Russell SJ, Cui L, Entingh-Pearsall A, Holzenberger M, Liao R, Kahn CR: Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol. 2007, 27: 1649-1664. 10.1128/MCB.01110-06
Dube PE, Forse CL, Bahrami J, Brubaker PL: The essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice. Gastroenterology. 2006, 131: 589-605. 10.1053/j.gastro.2006.05.055
Roura S, Planas F, Prat-Vidal C, Leta R, Soler-Botija C, Carreras F, Llach A, Hove-Madsen L, Pons Llado G, Farre J, et al.: Idiopathic dilated cardiomyopathy exhibits defective vascularization and vessel formation. Eur J Heart Fail. 2007, 9: 995-1002. 10.1016/j.ejheart.2007.07.008
Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E: Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol. 2003, 161: 793-804. 10.1083/jcb.200209019
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS: Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature. 2006, 441: 840-846. 10.1038/nature04785
Wasserman S, Faust K: Social Network Analysis: Methods and Applications. 1994, Cambridge University Press
Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Ann Statist. 2001, 29: 1165-1188. 10.1214/aos/1013699998.