Evolutions động của keratin alpha (α) và beta (β) đồng hành với sự đa dạng của lớp biểu bì và sự thích nghi của chim với các lối sống mới

Springer Science and Business Media LLC - Tập 14 - Trang 1-16 - 2014
Matthew J Greenwold1, Weier Bao1, Erich D Jarvis2, Haofu Hu3, Cai Li3,4, M Thomas P Gilbert4,5, Guojie Zhang3,6, Roger H Sawyer1
1Department of Biological Sciences, University of South Carolina, Columbia, USA.
2Department of Neurobiology, Howard Hughes Medical Institute and Duke University Medical Center, Durham, USA
3China National GeneBank, BGI-Shenzhen, Shenzhen, China
4Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
5Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Australia
6Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark

Tóm tắt

Các phần phụ của da động vật có xương sống được cấu tạo từ keratin do các gia đình gen đa dạng sản xuất. Keratin alpha (α) có mặt ở tất cả các loài động vật có xương sống, trong khi keratin beta (β) chỉ xuất hiện ở bò sát và chim. Chúng tôi đã nghiên cứu sự tiến hóa phân tử của các gia đình gen này trong bộ gen của 48 loài chim có mối quan hệ phát sinh chủng loài đa dạng và sự biểu hiện của chúng trong vảy và lông của gà. Chúng tôi phát hiện ra rằng tổng số α-keratin thấp hơn ở chim so với động vật có vú và bò sát không phải chim, tuy nhiên, hai gen α-keratin (KRT42 và KRT75) đã mở rộng ở chim. Ngược lại, các β-keratin cho thấy sự tiến hóa năng động liên quan đến phong cách sống của chim. Các β-keratin dựa riêng vào lông chim chiếm một phần lớn tổng số β-keratin, nhưng các nhánh có nguồn gốc độc lập của chim nước và chim ăn thịt có tỷ lệ gen β-keratin lông nhỏ hơn và tỷ lệ gen β-keratin keratinocyte lớn hơn. Thêm vào đó, các loài chim săn mồi có tỷ lệ cao hơn cho β-keratin móng vuốt. Phân tích sự biểu hiện của gen α- và β-keratin trong quá trình phát triển của vảy và lông gà cho thấy trong khi α-keratin được biểu hiện trong các mô này, số lượng và quy mô của các gen β-keratin được biểu hiện vượt xa α-keratin. Những kết quả này hỗ trợ quan điểm rằng số lượng gen α- và β-keratin được biểu hiện, tỷ lệ các gen β-keratin được biểu hiện và sự đa dạng của các gen β-keratin đã đóng vai trò quan trọng trong sự tiến hóa của lông chim và sự thích nghi của chim vào nhiều môi trường sinh thái khác nhau.

Từ khóa

#keratin alpha #keratin beta #tiến hóa phân tử #lớp biểu bì #thích nghi sinh thái #chim

Tài liệu tham khảo

Gill FB: Ornithology. 1995, W.H. Freeman and Company, New York Bell E, Thathachari YT: Development of feather keratin during embryogenesis of the chick. J Cell Biol. 1963, 16 (2): 215-223. 10.1083/jcb.16.2.215. Baden HP, Maderson PFA: Morphological and biophysical identification of fibrous proteins in the amniote epidermis. J Exp Zool. 1970, 174: 225-232. 10.1002/jez.1401740211. Haake AR, Kӧnig G, Sawyer RH: Avian feather development: relationships between morphogenesis and keratinization. Dev Biol. 1984, 106: 406-413. 10.1016/0012-1606(84)90240-9. Rogers GE: Gene for hair and avian keratins. Ann N Y Acad Sci. 1985, 455: 403-425. 10.1111/j.1749-6632.1985.tb50425.x. Bereiter-Hahn J, Matoltsy AG, Richards KS: Biology of the Integument 2 Vertebrates. 1986, Springer-Verlag, Berlin Vandebergh W, Bossuyt F: Radiation and functional diversification of alpha keratins during early vertebrate evolution. Mol Biol Evol. 2012, 29 (3): 995-1004. 10.1093/molbev/msr269. Greenwold MJ, Sawyer RH: Genomic organization and molecular phylogenies of the beta (β) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol. 2010, 10: 148-10.1186/1471-2148-10-148. Greenwold MJ, Sawyer RH: Molecular evolution and expression of archosaurian β-keratins: Diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins. J Exp Zool (Mol Dev Evol). 2013, 320B: 393-405. 10.1002/jez.b.22514. Li YI, Kong L, Ponting CP, Haerty W: Rapid evolution of beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol. 2013, 5 (5): 923-933. 10.1093/gbe/evt060. Lee LD, Baden HP: Organization of the polypeptide chains in mammalian keratin. Nature. 1976, 264: 377-379. 10.1038/264377a0. Hatzfeld M, Franke WW: Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol. 1985, 101: 1826-1841. 10.1083/jcb.101.5.1826. Fuchs E, Marchuk D: Type I and type II keratins have evolved from lower eukaryotes to form the epidermal intermediate filaments in mammalian skin. Proc Natl Acad Sci U S A. 1983, 80: 5857-5861. 10.1073/pnas.80.19.5857. Rice RH, Winters BR, Durbin-Johnson BP, Rocke DM: Chicken corneocyte cross-linked proteome. J Proteome Res. 2012, 12: 771-776. 10.1021/pr301036k. O’Guin MW, Sawyer RH: Avian scale development: VIII. Relationships between morphogenetic and biosynthetic differentiation. Dev Biol. 1982, 89: 485-492. 10.1016/0012-1606(82)90336-0. Sawyer RH, Knapp LW, O’Guin WM: Epidermis, Dermis and Appendages. Biology of the Integument 2 Vertebrates. Edited by: Bereiter-Hahn J, Matoltsy AG, Richards KS. 1986, Springer-Verlag, Berlin, 194-238. 10.1007/978-3-662-00989-5_11. Smoak DK, Sawyer RH: Avian spur development: abnormal morphogenesis and Keratinization in the Scaleless (sc/sc) mutant. Trans Am Microsc Soc. 1983, 102 (2): 135-144. 10.2307/3225883. Carver WE, Sawyer RH: Avian scale development: XI. Immunoelectron microscopic localization of α and β Keratins in the Scutate Scale. J Morphol. 1988, 195: 31-43. 10.1002/jmor.1051950104. Shames RB, Knapp LW, Carver WE, Washington LD, Sawyer RH: Keratinization of the outer surface of the avian scutate scale: interrelationship of alpha and beta keratin filaments in a cornifying tissue. Cell Tissue Res. 1989, 257: 85-92. 10.1007/BF00221637. Carver WE, Sawyer RH: Immunocytochemical localization and biochemical analysis of α and β keratins in the avian lingual epithelium. Am J Anat. 1989, 184: 66-75. 10.1002/aja.1001840108. Knapp LW, Shames RB, Barnes GL, Sawyer RH: Region-specific patterns of beta keratin expression during avian skin development. Dev Dyn. 1993, 196: 283-290. 10.1002/aja.1001960411. Ng CS, Wu P, Foley J, Foley A, McDonald M, Juan W, Huang C, Lai Y, Lo W, Chen C, Leal SM, Zhang H, Widelitz RB, Patel PI, Li W, Chuong C: The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis. PLoS Genet. 2012, 8 (7): e1002748-10.1371/journal.pgen.1002748. Walker ID, Rogers GE: Differentiation in Avian Keratinocytes. Eur J Biochem. 1976, 69: 329-339. 10.1111/j.1432-1033.1976.tb10917.x. Walker ID, Rogers GE: The structural basis for the heterogeneity of chick down feather keratin. Eur J Biochem. 1976, 69: 341-350. 10.1111/j.1432-1033.1976.tb10918.x. Powell BC, Rogers GE: Isolation of messenger RNA coding for the “fast” protein of embryonic chick feathers. Nucleic Acids Res. 1979, 8: 2165-2176. 10.1093/nar/7.8.2165. Alibardi L, Sawyer RH: Cell structure of developing down feathers in the zebrafinch with emphasis on barb ridge morphogenesis. J Anat. 2006, 208 (5): 621-642. 10.1111/j.1469-7580.2006.00580.x. Alibardi L: Immunolocalization of alpha-keratins and feather beta-keratins in feather cells and comparison with the general process of cornification in the skin of mammals. Ann Anat. 2013, 195: 189-198. 10.1016/j.aanat.2012.08.005. Kowata K, Nakaoka M, Nishio K, Fukao A, Satoh A, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S: Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken. Gene. 2014, 542: 23-28. 10.1016/j.gene.2014.03.027. Presland RB, Gregg K, Molloy PL, Morris CP, Crocker LA, Rogers GE: Avian keratin genes I: a molecular analysis of the structure and expression of a group of feather keratin genes. J Mol Biol. 1989, 209: 549-559. 10.1016/0022-2836(89)90593-7. Presland RB, Whitbread LA, Rogers GE: Avian keratin genes II: chromosomal arrangement and close linkage of three gene families. J Mol Biol. 1989, 209: 561-576. 10.1016/0022-2836(89)90594-9. Whitbread LA, Gregg K, Rogers GE: The structure and expression of a gene encoding chick claw keratin. Gene. 1991, 101: 223-229. 10.1016/0378-1119(91)90415-8. Vanhoutteghem A, Londero T, Djian P, Ghinea N: Serial cultivation of chicken keratinocytes, a composite cell type that accumulates lipids and synthesizes a novel β-keratin. Differentiation. 2004, 72 (4): 123-137. 10.1111/j.1432-0436.2004.07204002.x. Dalla Valle L, Nardi A, Gelmi C, Toni M, Emera D, Alibardi L: β-Keratins of the Crocodilian epidermis: composition, structure, and phylogenetic relationships. J Exp Zool (Mol Dev Evol). 2009, 312B: 42-57. 10.1002/jez.b.21241. Dalla Valle L, Nardi A, Toni M, Emera D, Alibardi L: Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. J Anat. 2009, 214: 284-300. 10.1111/j.1469-7580.2008.01030.x. Dalla Valle L, Nardi A, Bonazza G, Zuccal C, Emera D, Alibardi L: Forty keratin associated β-proteins (β-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis. J Exp Zool (Mol Dev Evol). 2010, 314B: 11-32. 10.1002/jez.b.21306. Greenwold MJ, Sawyer RH: Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. J Exp Zool (Mol Dev Evol). 2011, 316: 609-616. 10.1002/jez.b.21436. Hartl M, Bister K: Specific activation in jun-transformed avian fibroblasts of a gene (bkj) related to the avian β-keratin gene family. Proc Natl Acad Sci U S A. 1995, 92: 11731-11735. 10.1073/pnas.92.25.11731. Hesse M, Zimek A, Weber K, Magin TM: Comprehensive analysis of keratin gene clusters in humans and rodents. Eur J Cell Biol. 2004, 83: 19-26. 10.1078/0171-9335-00354. Zimek A, Weber K: Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish. Eur J Cell Biol. 2005, 84: 623-635. 10.1016/j.ejcb.2005.01.007. Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor R, Jaffe JD, Ray DA, Boissinot S, Botka C, Castoe T, Colbourne JK, Fujita MK, Moreno GR, ten Hallers BF, Haussler D, Heger A, Heiman D, Janes DE, Johnson J, de Jong PJ, Koriabine MY, Novick P, Organ CL, Peach SE, Poe S, Pollack DD, et al: The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011, 477: 587-591. 10.1038/nature10390. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, et al: Comparative genomics across modern bird species reveal insights into avian genome evolution and adaptation. Submitted to Science 2014 Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, et al: Whole genome analyses resolve the early branches in the tree of life of modern birds. In press Science 2014 St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed’Hom B, Abzhanov A, Burgess SC, Cooksey AM, Castoe TA, Crawford NG, Densmore LD, Drew JC, Edwards SV, Faircloth BC, Fujita MK, Greenwold MJ, Hoffmann FG, Howard JM, Iguchi T, Janes DE, Khan SY, Kohno S, de Koning AP J, Lance SL, McCarthy FM, McCormack JE, et al: Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol. 2012, 13: 415-10.1186/gb-2012-13-1-415. Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, et al: The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. 2013, 45 (6): 701-706. 10.1038/ng.2615. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DAD, Rogers MA, Wright MW: New consensus nomenclature for mammalian keratins. J Cell Biol. 2006, 174 (2): 169-174. 10.1083/jcb.200603161. Moll R, Divo M, Langbein L: The human keratins: biology and pathology. Histochem Cell Biol. 2008, 129 (6): 705-733. 10.1007/s00418-008-0435-6. Heller S, Sheane CA, Javed Z, Hudspeth AJ: Molecular markers for cell types of the inner ear and candidate genes for hearing disorders. Proc Natl Acad Sci U S A. 1998, 95: 11400-11405. 10.1073/pnas.95.19.11400. Landauer W, Dunn LC: The “frizzle” character of fowls, its expression and inheritance. J Hered. 1930, 21: 290-305. Blumenberg M: Concerted gene duplications in the two keratin gene families. J Mol Evol. 1988, 27: 203-211. 10.1007/BF02100075. Li X, Chiang H, Zhu J, Dowd SE, Zhou H: Characterization of a newly developed chicken 44 K Agilent microarray. BMC Genomics. 2008, 9: 60-10.1186/1471-2164-9-60. Lucas AM, Stettenheim PR: Avian Anatomy – Integument. Agricultural Handbook 362. 1972, Agricultural Research Services: US Department of Agriculture, Washington DC Sengel P: Morphogenesis of skin. 1976, Cambridge University Press, Cambridge Sawyer RH: Avian scale development. I. Histogenesis and morphogenesis of the epidermis and dermis during formation of the scale ridge. J Exp Zool. 1972, 181: 365-383. 10.1002/jez.1401810307. Sawyer RH, Fallon JF: Epithelial-mesenchymal interactions in development. 1983, Praeger Publishers, New York Shames RB, Sawyer RH: Expression of β-keratin genes during skin development in normal and sc/sc chick embryos. Dev Biol. 1986, 116 (1): 15-22. 10.1016/0012-1606(86)90038-2. Shames RB, Sawyer RH: Chapter 11, Expression of β-keratin Genes during Development of Avian Skin Appendages. Current Topics in Developmental Biology. Edited by: Moscona AA, Monroy A. 1987, Academic Press, Inc, New York, 235-253. Ng CS, Wu P, Fan W, Yan J, Chen C, Lai Y, Wu S, Mao C, Chen J, Lu MJ, Ho M, Widelitz RB, Chen C, Chuong C, Li W: Genomic organization, transcriptomics analysis, and functional characterization of avian α- and β-keratins in diverse feather forms. Genome Biol Evol 2014, doi:10.1093/gbe/evu181., Burt A, Bell G: Mammalian chiasma frequencies as a test of two theories of recombination. Nature. 1987, 326: 803-805. 10.1038/326803a0. Ross-Ibarra J: The evolution of recombination under domestication: a test of two hypotheses. Am Nat. 2004, 163: 105-112. 10.1086/380606. Kemp DJ, Rogers GE: Differentiation of avian keratinocytes. Characterization and relations of the keratin proteins of adult and embryonic feathers and scales. Biochemistry. 1972, 11 (6): 969-975. 10.1021/bi00756a005. Walker ID, Bridgen J: The Keratin Chains of avian scale tissue. Eur J Biochem. 1976, 67: 283-293. 10.1111/j.1432-1033.1976.tb10660.x. Kemp DJ: Unique and repetitive sequences in multiple genes for feather keratin. Nature. 1975, 254: 573-577. 10.1038/254573a0. Gregg K, Rogers GE: Feather Keratin: Composition, Structure, and Biogenesis. Biology of the Integument, Vol. 2. Vertebrates. Edited by: Bereiter-Hahn J, Maltotsy AG, Richards KS. 1986, Springer-Verlag, New York, 666-694. 10.1007/978-3-662-00989-5_33. Shames RB, Knapp LW, Carver WE, Sawyer RH: Identification, expression, and localization of β keratin gene products during development of avian scutate scales. Differentiation. 1988, 38 (2): 115-123. 10.1111/j.1432-0436.1988.tb00205.x. Knapp LW, Linser PJ, Carver WE, Sawyer RH: Biochemical identification and immunological localization of two non-keratin polypeptides associated with the terminal differentiation of avian scale epidermis. Cell Tissue Res. 1991, 265 (3): 535-545. 10.1007/BF00340877. Zhang L, Nie Q, Su Y, Xie X, Luo W, Jia X, Zhang X: MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene. 2013, 519: 77-81. 10.1016/j.gene.2013.01.043. Csermely D, Rossi O: Bird claws and bird of prey talons: where is the difference?. Ital J Zool. 2006, 73: 43-53. 10.1080/11250000500502368. Fowler DW, Freedman EA, Scannella JB: Predatory functional morphology in raptors: interdigital variation in talon size is related to prey restraint and immobilisation technique. PLoS ONE. 2009, 4 (11): e7999-10.1371/journal.pone.0007999. Birn-Jeffery AV, Miller CE, Naish D, Rayfield EJ, Hone DWE: Pedal claw curvature in birds, lizards and mesozoi dinosaurs – complicated categories and compensating for mass-specific and phylogenetic control. PLoS ONE. 2012, 7 (12): e50555-10.1371/journal.pone.0050555. Wu P, Jiang T, Suksaweang S, Widelitz RB, Chuong C: Molecular shaping of the beak. Science. 2004, 305: 1465-1466. 10.1126/science.1098109. Rijke AM: Wettability and phylogenetic development of feather structure in water birds. J Exp Biol. 1970, 52: 469-479. O’Donnell IJ, Inglis AS: Amino acid sequence of a feather keratin from Silver Gull (Larus novae-hollandiae) and comparison with one from Emu (Dromaius novae-hollandiae). Aust J Biol Sci. 1974, 27: 369-382. Shedlock AM, Edwards SV: Amniotes (Amniota). The Timetree of Life. Edited by: Hedges SB, Kumar S. 2009, Oxford Univ. Press, New York, 375-379. Kent JW: BLAT-The BLAST-like alignment tool. Genome Res. 2002, 12: 656-664. 10.1101/gr.229202. Article published online before March 2002. Birney E, Clamp M, Durbin R: GeneWise and Genomewise. Genome Res. 2004, 14: 988-995. 10.1101/gr.1865504. Garland T, Dickerman AW, Janis CM, Jones JA: Phylogenetic analysis of covariance by computer simulation. Syst Biol. 1993, 42 (3): 265-292. 10.1093/sysbio/42.3.265. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W: GEIGER: investigating evolutionary radiations. Bioinformatics. 2008, 24: 129-131. 10.1093/bioinformatics/btm538. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22 (21): 2688-2690. 10.1093/bioinformatics/btl446. Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21 (9): 2104-2105. 10.1093/bioinformatics/bti263. Larkin MA, Blackshields G, Bown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.