Mô phỏng Động lực học của Xe Điện Đồng bộ Từ trường Vĩnh cửu (PMSM) Dựa trên Simulink
Tóm tắt
Đóng vai trò quan trọng trong thiết kế xe và tiết kiệm năng lượng, mô phỏng động lực học xe điện là điều cần thiết, đặc biệt dưới các điều kiện thử nghiệm phức tạp. Phần mềm mô phỏng xe thương mại hiện tại chủ yếu được sử dụng cho mô phỏng động lực học xe nhiên liệu, thiếu chính xác các phần truyền động điện và nguồn mở. Để giải quyết vấn đề này, bài báo này đề xuất một nền tảng mô phỏng động lực học xe nguồn mở và linh hoạt có bao gồm 27 bậc tự do (DOF) dựa trên Simulink, có thể hỗ trợ tương thích cả mô phỏng động lực học xe truyền thống và xe điện. Ngoài ra, nền tảng này có thể hỗ trợ tùy chỉnh mô-đun, thuận tiện cho các nhà nghiên cứu. Mặc dù nền tảng này vẫn cần một số lần lặp để đạt tiêu chuẩn công nghiệp và thương mại, nhưng nó đã có thể đạt được tính nhất quán tham số dưới yêu cầu ổn định trong các kịch bản chung. Chúng tôi tin rằng công trình này nên nhận được sự chú ý và tham gia nghiên cứu để cung cấp ngưỡng thấp hơn và nhiều tài liệu tham khảo hơn cho mô phỏng động lực học của xe điện nhằm giảm tiêu thụ năng lượng của xe.
Từ khóa
#mô phỏng động lực học #xe điện #nguồn mở #Simulink #tùy chỉnh mô-đun #tối ưu hóa năng lượngTài liệu tham khảo
Kinjawadekar, T., Dixit, N., Heydinger, G.J., Guenther, D.A., and Salaani, M.K. (2009). Vehicle Dynamics Modeling and Validation of the 2003 Ford Expedition with ESC Using CarSim, SAE International. SAE Technical Paper Series.
Fan, B.S.-M. (2007). Modeling and Simulation of a Hybrid Electric Vehicle Using MATLAB/Simulink and ADAMS. [Master’s Thesis, University of Waterloo].
Hasewend, 2001, AVL Cruise—Driving performance and fuel consumption simulation, ATZ Worldw., 103, 10, 10.1007/BF03226780
Ferraris, A., de Carvalho Pinheiro, H., Galanzino, E., Airale, A.G., and Carello, M. (2019, January 3–4). All-Wheel Drive Electric Vehicle Performance Optimization: From Modelling to Subjective Evaluation on a Static Simulator. Proceedings of the 2019 Electric Vehicles International Conference (EV), Bucharest, Romania.
De Carvalho Pinheiro, H., Galanzino, E., Messana, A., Sisca, L., Ferraris, A., Airale, A.G., and Carello, M. (2020). All-Wheel Drive Electric Vehicle Modeling and Performance Optimization, SAE International. SAE Technical Paper.
Bonera, E., Gadola, M., Chindamo, D., Morbioli, S., and Magri, P. (2019, January 8–11). Integrated Design Tools for Model-Based Development of Innovative Vehicle Chassis and Powertrain Systems. Proceedings of the International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, Lviv, Ukraine.
Barnes, D., Folden, J., Yoon, H.-S., and Puzinauskas, P. (2020). Scalable Simulation Environment for Adaptive Cruise Controller Development, SAE International. SAE Technical Paper.
Zhu, C., Zhao, C., and Li, Z. (2019, January 4–6). A Joint Simulation for Electric Vehicle Design based on MATLAB/Simulink and CarSim. Proceedings of the 2019 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Cairo, Egypt.
Grunditz, E. (2016). Design and Assessment of Battery Electric Vehicle Powertrain, with Respect to Performance, Energy Consumption and Electric Motor Thermal Capability, Chalmers University of Technology.
Wang, 2014, Design of Body Structure for New Type Lightweight Electric Vehicle, Key Eng. Mater., 620, 335, 10.4028/www.scientific.net/KEM.620.335
Asher, 2017, Analysis and optimisation of objective vehicle dynamics testing in winter conditions, Veh. Syst. Dyn., 55, 945, 10.1080/00423114.2016.1278248
Polack, P., Altché, F., d’Andréa-Novel, B., and de la Fortelle, A. (2017, January 11–14). The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles?. Proceedings of the 2017 IEEE intelligent vehicles symposium (IV), Redondo Beach, CA, USA.
Falcone, 2008, MPC-based yaw and lateral stabilisation via active front steering and braking, Veh. Syst. Dyn., 46, 611, 10.1080/00423110802018297
Pacejka, H.B. (2012). Tire and Vehicle Dynamics, Butterworth-Heinemann. [3rd ed.].
Dugoff, 1970, An analysis of tire traction properties and their influence on vehicle dynamic performance, SAE Trans., 79, 1219
Johanastrom, 2008, Revisiting the LuGre friction model, IEEE Control. Syst. Mag., 28, 101, 10.1109/MCS.2008.929425
Guo, 2007, UniTire: Unified tire model for vehicle dynamic simulation, Veh. Syst. Dyn., 45, 79, 10.1080/00423110701816742
Zhang, Y., Zhao, C., and Li, Z. (2020, January 6–8). Electric Vehicle Regenerative Braking System Simulation based on Kalman Filter. Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China.
Tehrani, K., and Maurice, O. (2017, January 18–21). A cyber physical energy system design (CPESD) for electric vehicle applications. Proceedings of the 2017 12th System of Systems Engineering Conference (SoSE), Waikoloa, HI, USA.
Gu, 2010, Vehicle dynamic simulation for efficiency optimization of four-wheel independent driven electric vehicle, World Electr. Veh. J., 4, 319, 10.3390/wevj4020319
Ananthamoorthy, N.P., and Baskaran, K. (2012, January 10–12). Simulation of PMSM based on current hysteresis PWM and Fed PI controller. Proceedings of the 2012 International Conference on Computer Communication and Informatics, Coimbatore, India.
Lina, 2014, Tuning method for PI controllers of PMSM driving system, Trans. China Electrotech. Soc. vol., 29, 104
Liu, 2009, Simulation of PMSM vector control system based on Matlab/Simulink, Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Volume 2, 343, 10.1109/ICMTMA.2009.117
Zhou, 2018, High performance three-phase PMSM open-phase fault-tolerant method based on reference frame transformation, IEEE Trans. Ind. Electron., 66, 7571, 10.1109/TIE.2018.2877197
Tang, H., Li, H., and Lin, J. (2018, January 10–11). Research on sensorless control method of pmsm based on a kalman filter sliding mode observer. Proceedings of the 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China.
Li, B., and Wang, C. (2016, January 28–30). Comparative analysis on PMSM control system based on SPWM and SVPWM. Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China.
Jlassi, 2019, A Single Method for Multiple IGBT, Current, and Speed Sensor Faults Diagnosis in Regenerative PMSM Drives, IEEE J. Emerg. Sel. Top. Power Electron., 8, 2583, 10.1109/JESTPE.2019.2918062
Preindl, 2012, Model predictive direct speed control with finite control set of PMSM drive systems, IEEE Trans. Power Electron., 28, 1007, 10.1109/TPEL.2012.2204277
Xiaojing, 2013, Comparison between id= 0 vector controller and feedback linearization controller, Autom. Instrum., 4, 57
Lee, 2006, Adaptive self-tuning MTPA vector controller for IPMSM drive system, IEEE Trans. Energy Convers., 21, 636, 10.1109/TEC.2006.878243
Sepulchre, 2018, MTPV flux-weakening strategy for PMSM high speed drive, IEEE Trans. Ind. Appl., 54, 6081, 10.1109/TIA.2018.2856841
Bendjedia, M., Tehrani, K.A., Azzouz, Y., and Shall, H. (2014, January 25–27). Robust RST controller design for induction motor drive for electric vehicle application. Proceedings of the 2014 First International Conference on Green Energy ICGE, Sfax, Tunisia.
Lee, J., and Chang, H.-J. (2018). Analysis of explicit model predictive control for path-following control. PLoS ONE, 13.
Hassell, T.J., Weaver, W.W., and Oliveira, A.M. (2013, January 23–26). Using Matlab’s Simscape modeling environment as a simulation tool in power electronics and electrical machines courses. Proceedings of the 2013 IEEE Frontiers in Education Conference (FIE), Oklahoma City, OK, USA.
Kabiraj, K., and Bhaumik, A. (2014, January 8). Mathematical modeling for vehicle dynamics, steady state cornering performance prediction using non linear tire data employing a four wheel model. Proceedings of the Second International Conference on Current Trends in Engineering and Technology-ICCTET, Coimbatore, India.
Peng, 2012, Comparison of various double-lane change manoeuvre specifications, Veh. Syst. Dyn., 50, 1157, 10.1080/00423114.2012.659741
2008, Modeling and optimization of Macpherson suspension based on ADAM S/CAR, Mod. Manuf. Eng., 8, 55
Goodarzi, 2017, Vehicle suspension system technology and design, Synth. Lect. Adv. Automot. Technol., 1, 1
Van Gennip, M.D. (2018). Parameter Identification for Combined Slip Tire Models using Vehicle Measurement System, SAE International.