Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors

Neural Development - Tập 4 - Trang 1-19 - 2009
Yi-Wen Hsieh1,2, Xian-Jie Yang1
1Jules Stein Eye Institute and Department of Ophthalmology, Molecular Biology Institute, University of California, David Geffen School of Medicine Stein Plaza, Los Angeles, USA
2Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, USA

Tóm tắt

The paired homeobox protein Pax6 is essential for proliferation and pluripotency of retinal progenitors. However, temporal changes in Pax6 protein expression associated with the generation of various retinal neurons have not been characterized with regard to the cell cycle. Here, we examine the dynamic changes of Pax6 expression among chicken retinal progenitors as they progress through the neurogenic cell cycle, and determine the effects of altered Pax6 levels on retinogenesis. We provide evidence that during the preneurogenic to neurogenic transition, Pax6 protein levels in proliferating progenitor cells are down-regulated. Neurogenic retinal progenitors retain a relatively low level of Pax6 protein, whereas postmitotic neurons either elevate or extinguish Pax6 expression in a cell type-specific manner. Cell imaging and cell cycle analyses show that neurogenic progenitors in the S phase of the cell cycle contain low levels of Pax6 protein, whereas a subset of progenitors exhibits divergent levels of Pax6 protein upon entering the G2 phase of the cell cycle. We also show that M phase cells contain varied levels of Pax6, and some correlate with the onset of early neuronal marker expression, forecasting cell cycle exit and cell fate commitment. Furthermore, either elevating or knocking down Pax6 attenuates cell proliferation and results in increased cell death. Reducing Pax6 decreases retinal ganglion cell genesis and enhances cone photoreceptor and amacrine interneuron production, whereas elevating Pax6 suppresses cone photoreceptor and amacrine cell fates. These studies demonstrate for the first time quantitative changes in Pax6 protein expression during the preneurogenic to neurogenic transition and during the neurogenic cell cycle. The results indicate that Pax6 protein levels are stringently controlled in proliferating progenitors. Maintaining a relatively low Pax6 protein level is necessary for S phase re-entry, whereas rapid accumulation or reduction of Pax6 protein during the G2/M phase of the cell cycle may be required for specific neuronal fates. These findings thus provide novel insights on the dynamic regulation of Pax6 protein among neurogenic progenitors and the temporal frame of neuronal fate determination.

Tài liệu tham khảo

Glaser T, Walton DS, Maas RL: Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet. 1992, 2: 232-239. 10.1038/ng1192-232. Halder G, Callaerts P, Gehring WJ: Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science. 1995, 267: 1788-1792. 10.1126/science.7892602. Gehring WJ: New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered. 2005, 96: 171-184. 10.1093/jhered/esi027. Ashery-Padan R, Gruss P: Pax6 lights-up the way for eye development. Curr Opin Cell Biol. 2001, 13: 706-714. 10.1016/S0955-0674(00)00274-X. Quiring R, Walldorf U, Kloter U, Gehring WJ: Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science. 1994, 265: 785-789. 10.1126/science.7914031. Gehring WJ: The master control gene for morphogenesis and evolution of the eye. Genes Cells. 1996, 1: 11-15. 10.1046/j.1365-2443.1996.11011.x. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A: Pax6 induces ectopic eyes in a vertebrate. Development. 1999, 126: 4213-4222. Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V: Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991, 354: 522-525. 10.1038/354522a0. Grindley JC, Hargett LK, Hill RE, Ross A, Hogan BL: Disruption of PAX6 function in mice homozygous for the Pax6Sey-1Neu mutation produces abnormalities in the early development and regionalization of the diencephalon. Mech Dev. 1997, 64: 111-126. 10.1016/S0925-4773(97)00055-5. Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, Lyon MF: Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Morphol. 1986, 97: 95-110. Callaerts P, Halder G, Gehring WJ: PAX-6 in development and evolution. Annu Rev Neurosci. 1997, 20: 483-532. 10.1146/annurev.neuro.20.1.483. Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, Hastie ND: Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996, 86: 71-82. 10.1016/S0092-8674(00)80078-1. Manuel M, Pratt T, Liu M, Jeffery G, Price DJ: Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance. BMC Dev Biol. 2008, 8: 59-10.1186/1471-213X-8-59. Hogan BL, Hirst EM, Horsburgh G, Hetherington CM: Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development. 1988, 103 (Suppl): 115-119. Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL: PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet. 1994, 7: 463-471. 10.1038/ng0894-463. Schmahl W, Knoedlseder M, Favor J, Davidson D: Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta Neuropathol. 1993, 86: 126-135. 10.1007/BF00334879. Baumer N, Marquardt T, Stoykova A, Ashery-Padan R, Chowdhury K, Gruss P: Pax6 is required for establishing naso-temporal and dorsal characteristics of the optic vesicle. Development. 2002, 129: 4535-4545. Schwarz M, Cecconi F, Bernier G, Andrejewski N, Kammandel B, Wagner M, Gruss P: Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development. 2000, 127: 4325-4334. Kammandel B, Chowdhury K, Stoykova A, Aparicio S, Brenner S, Gruss P: Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev Biol. 1999, 205: 79-97. 10.1006/dbio.1998.9128. Xu PX, Zhang X, Heaney S, Yoon A, Michelson AM, Maas RL: Regulation of Pax6 expression is conserved between mice and flies. Development. 1999, 126: 383-395. Lakowski J, Majumder A, Lauderdale JD: Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Dev Biol. 2007, 307: 498-520. 10.1016/j.ydbio.2007.04.015. Jaworski C, Sperbeck S, Graham C, Wistow G: Alternative splicing of Pax6 in bovine eye and evolutionary conservation of intron sequences. Biochem Biophys Res Commun. 1997, 240: 196-202. 10.1006/bbrc.1997.7623. Carriere C, Plaza S, Caboche J, Dozier C, Bailly M, Martin P, Saule S: Nuclear localization signals, DNA binding, and transactivation properties of quail Pax-6 (Pax-QNR) isoforms. Cell Growth Differ. 1995, 6: 1531-1540. Kim J, Lauderdale JD: Analysis of Pax6 expression using a BAC transgene reveals the presence of a paired-less isoform of Pax6 in the eye and olfactory bulb. Dev Biol. 2006, 292: 486-505. 10.1016/j.ydbio.2005.12.041. Zhang W, Cveklova K, Oppermann B, Kantorow M, Cvekl A: Quantitation of PAX6 and PAX6(5a) transcript levels in adult human lens, cornea, and monkey retina. Mol Vis. 2001, 7: 1-5. Dominguez M, Ferres-Marco D, Gutierrez-Avino FJ, Speicher SA, Beneyto M: Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Genet. 2004, 36: 31-39. 10.1038/ng1281. Haubst N, Berger J, Radjendirane V, Graw J, Favor J, Saunders GF, Stoykova A, Gotz M: Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development. 2004, 131: 6131-6140. 10.1242/dev.01524. Berger J, Berger S, Tuoc TC, D'Amelio M, Cecconi F, Gorski JA, Jones KR, Gruss P, Stoykova A: Conditional activation of Pax6 in the developing cortex of transgenic mice causes progenitor apoptosis. Development. 2007, 134: 1311-1322. 10.1242/dev.02809. Singh S, Mishra R, Arango NA, Deng JM, Behringer RR, Saunders GF: Iris hypoplasia in mice that lack the alternatively spliced Pax6(5a) isoform. Proc Natl Acad Sci USA. 2002, 99: 6812-6815. 10.1073/pnas.102691299. Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P: Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development. 2002, 129: 455-466. Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, Hevner RF, West JD, Price DJ: Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev Biol. 2007, 302: 50-65. 10.1016/j.ydbio.2006.08.035. Bel-Vialar S, Medevielle F, Pituello F: The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev Biol. 2007, 305: 659-673. 10.1016/j.ydbio.2007.02.012. Wetts R, Fraser SE: Multipotent precursors can give rise to all major cell types of the frog retina. Science. 1988, 239: 1142-1145. 10.1126/science.2449732. Holt CE, Bertsch TW, Ellis HM, Harris WA: Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron. 1988, 1: 15-26. 10.1016/0896-6273(88)90205-X. Turner DL, Snyder EY, Cepko CL: Lineage-independent determination of cell type in the embryonic mouse retina. Neuron. 1990, 4: 833-845. 10.1016/0896-6273(90)90136-4. Turner DL, Cepko CL: A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987, 328: 131-136. 10.1038/328131a0. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D: Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA. 1996, 93: 589-595. 10.1073/pnas.93.2.589. Livesey FJ, Cepko CL: Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci. 2001, 2: 109-118. 10.1038/35053522. Perron M, Kanekar S, Vetter ML, Harris WA: The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol. 1998, 199: 185-200. 10.1006/dbio.1998.8939. Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P: Pax6 is required for the multipotent state of retinal progenitor cells. Cell. 2001, 105: 43-55. 10.1016/S0092-8674(01)00295-1. Oron-Karni V, Farhy C, Elgart M, Marquardt T, Remizova L, Yaron O, Xie Q, Cvekl A, Ashery-Padan R: Dual requirement for Pax6 in retinal progenitor cells. Development. 2008, 135: 4037-4047. 10.1242/dev.028308. Yang X-J: In situ hybridization. Vision Research Protocols. Edited by: Rakoczy PE. 2001, Totowa, NJ: Humana Press, 45-69. [Methods in Molecular Medicine, volume 47] Martinez-Morales JR, Del Bene F, Nica G, Hammerschmidt M, Bovolenta P, Wittbrodt J: Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell. 2005, 8: 565-574. 10.1016/j.devcel.2005.01.022. Zaccarini R, Cordelieres FP, Martin P, Saule S: Pax6p46 binds chromosomes in the pericentromeric region and induces a mitosis defect when overexpressed. Invest Ophthalmol Vis Sci. 2007, 48: 5408-5419. 10.1167/iovs.07-0413. Riesenberg AN, Le TT, Willardsen MI, Blackburn DC, Vetter ML, Brown NL: Pax6 regulation of Math5 during mouse retinal neurogenesis. Genesis. 2009, 43: 175-187. 10.1002/dvg.20479. Toy J, Norton JS, Jibodh SR, Adler R: Effects of homeobox genes on the differentiation of photoreceptor and nonphotoreceptor neurons. Invest Ophthalmol Vis Sci. 2002, 43: 3522-3529. Hamburger V, Hamilton HL: A series of normal stages in the development of the chick embryo. J Morphol. 1951, 88: 49-92. 10.1002/jmor.1050880104. Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991, 108: 193-199. 10.1016/0378-1119(91)90434-D. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y: A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA. 2002, 99: 5515-5520. 10.1073/pnas.082117599. Hashimoto T, Zhang XM, Chen BY, Yang XJ: VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development. 2006, 133: 2201-2210. 10.1242/dev.02385. Zhang XM, Yang XJ: Regulation of retinal ganglion cell production by Sonic hedgehog. Development. 2001, 128: 943-957.