Dynamic Behavior of Axially Functionally Graded Pipes Conveying Fluid

Mathematical Problems in Engineering - Tập 2017 Số 1 - 2017
Chen An1, Jian Su2
1Institute for Ocean Engineering, China University of Petroleum-Beijing, Beijing 102249
2Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, 21941-972 Rio de Janeiro, RJ

Tóm tắt

Dynamic behavior of axially functionally graded (FG) pipes conveying fluid was investigated numerically by using the generalized integral transform technique (GITT). The transverse vibration equation was integral transformed into a coupled system of second‐order differential equations in the temporal variable. The Mathematica’s built‐in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. Excellent convergence of the proposed eigenfunction expansions was demonstrated for calculating the transverse displacement at various points of axially FG pipes conveying fluid. The proposed approach was verified by comparing the obtained results with the available solutions reported in the literature. Moreover, parametric studies were performed to analyze the effects of Young’s modulus variation, material distribution, and flow velocity on the dynamic behavior of axially FG pipes conveying fluid.

Từ khóa


Tài liệu tham khảo

10.1016/j.ijpvp.2011.02.004

10.1006/jfls.1993.1011

Païdoussis M. P., 1998, Fluid-Structure Interactions: Slender Structures and Axial Flow

10.1016/j.jsv.2007.03.065

10.1115/1.4010971

10.1016/S0022-460X(74)80002-7

10.1243/jmes_jour_1975_017_005_02

10.1016/j.camwa.2010.04.049

10.1155/2010/806475

10.1016/0020-7225(73)90014-1

10.1016/j.jfluidstructs.2005.04.007

10.1016/j.jsv.2007.05.023

10.1023/a:1022843012114

10.1002/1097-0207(20010120)50:2<419::aid-nme31>3.0.co;2-f

10.1007/bf02465432

10.1007/s10338-007-0741-x

10.1006/jsvi.2002.5045

10.1299/jsmec.48.688

10.1016/s0894-9166(11)60047-5

10.1016/j.nucengdes.2011.06.024

10.1016/j.nucengdes.2012.12.017

10.1016/j.compstruct.2003.12.002

10.1016/s0022-460x(03)00658-8

10.1016/j.euromechsol.2008.02.003

10.1016/j.mechrescom.2008.09.011

10.1142/S0219455411004154

Shen H.-S., 2009, Functionally Graded Materials : Nonlinear Analysis of Plates and Shells

Zhong Z., 2012, Mechanics of Functionally Graded Materials and Structures

10.1016/j.jsv.2009.12.029

10.1016/j.compositesb.2012.09.015

10.1016/j.compositesb.2011.01.017

10.1016/j.apm.2011.09.073

10.1016/j.compstruct.2012.03.020

10.1016/j.apm.2010.07.006

10.1016/j.amc.2011.05.035

10.1016/j.amc.2013.12.008

10.1016/j.nucengdes.2012.09.018

10.1016/j.nucengdes.2015.06.012

10.1002/nme.2513

10.1016/s1001-6058(11)60317-x

10.1016/j.apm.2013.04.038

Leissa A. W., 2011, Vibrations of Continuous Systems

Wolfram S., 2003, The Mathematica Book