Trong quá trình tiến hóa từ những loài tetrapoda đầu tiên, các gen mới được tuyển dụng ngày càng trở thành các paralog của các gen hiện có và phân bố không ngẫu nhiên trong các nhiễm sắc thể
Tóm tắt
Từ khóa
Tài liệu tham khảo
Domazet-Loso T, Brajković JTD. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007;23(11):533–9. https://doi.org/10.1016/j.tig.2007.08.014.
Domazet-Loso T, Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 2010;8(1):66. https://doi.org/10.1186/1741-7007-8-66.
Sestak MS, Domazet-Loso T. Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain. Mol Biol Evol. 2015;32(2):299–312. https://doi.org/10.1093/molbev/msu319.
Arendsee Z, Li J, Singh U, Seetharam A, Dorman K, Wurtele ES. Phylostratr: a framework for phylostratigraphy. Bioinformatics. 2019;35(19):3517–627. https://doi.org/10.1093/bioinformatics/btz171.
Litman T, Stein WD. Obtaining estimates for the ages of all the protein-coding genes and most of the ontology-identified noncoding genes of the human genome, assigned to 19 phylostrata. Semin Oncol. 2018;46(1):3–9. https://doi.org/10.1053/j.seminoncol.2018.11.002.
Simonti CN, Capra JA. The evolution of the human genome. Curr Opin Genet Dev. 2015;35:9–15. https://doi.org/10.1016/j.gde.2015.08.005.
Vinogradov AE. DNA helix: the importance of being GC-rich. Mamm Genome. 2003;31(7):1838–44.
Plovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M, Vitale L. On the length, weight and GC content of the human genome. BMC Res Notes. 2019:1–7.
Khan I, Maldonado E, Vasconcelos V, O’Brien SJ, Johnson WE, Antunes A. Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments. BMC Genomics. 2014;15(1):779. https://doi.org/10.1186/1471-2164-15-779.
Wu D-D, Irwin DM, Zhang Y-P. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evol Biol. 2008;8(1):241–80. https://doi.org/10.1186/1471-2148-8-241.
Kasahara M. The 2R hypothesis: an update. Curr Opin Immunol. 2007;19(5):547–52. https://doi.org/10.1016/j.coi.2007.07.009.
Moyers BA, Zhang J. Evaluating Phylostratigraphic evidence for widespread de novo gene birth in genome evolution. Mol Biol Evol. 2016;33(5):1245–56. https://doi.org/10.1093/molbev/msw008.
Friedman R, Hughes AL. The temporal distribution of gene duplication events in a set of highly conserved human gene families. Mol Biol Evol. 2003;20(1):154–61. https://doi.org/10.1093/molbev/msg017.
Guerzoni D, McLysaght A. De novo genes arise at a slow but steady rate along the primate lineage and have been subject to incomplete lineage sorting. Genome Biol Evol. 2016;8(4):evw074.
Casola C. From De Novo to “ De Nono ”: The Majority of Novel Protein-Coding Genes Identified with Phylostratigraphy Are Old Genes or Recent Duplicates. Genome Biol Evol. 2018;10:2906–18.
Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, et al. The DNA sequence and biology of human chromosome 19. 2004;428.
Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, et al. The DNA sequence and comparative analysis of human chromosome 5. 2004;431.
Deakin JE, Delbridge ML, Koina E, Harley N, Alsop AE, Wang C, et al. Reconstruction of the ancestral marsupial karyotype from comparative gene maps. BMC Evol Biol. 2013;13:258.
Graves JAM. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet. 2015;94(4):567–74. https://doi.org/10.1007/s12041-015-0572-3.
Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression. Front Genet. 2012;3:1–13. https://doi.org/10.3389/fgene.2012.00217.
Fraser J, Ferrai C, Chiariello AM, Schueler M, Rito T, Laudanno G, et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol Syst Biol. 2015;11(12):1–14. https://doi.org/10.15252/msb.20156492.
Fujimoto S, Takase T, Kadono N, Maekubo K, Hirai Y. Krtap11-1, a hair keratin-associated protein, as a possible crucial element for the physical properties of hair shafts. J Dermatol Sci. 2014;74:39–47.
Cloete E, Khumalo NP, Ngoepe MN. The what, why and how of curly hair: a review. Proc Roy Soc A. 2019;475:20190516. https://doi.org/10.1098/rspa.2019.0516.
Bajdek P, Om MQ, Owocki K, Sulej T. Microbiota and food residues including possible evidence of pre-mammalian hair in upper Permian coprolites from. Lethaia. 2016;49(4):455–77. https://doi.org/10.1111/let.12156.
Ji Q, Luo Z, Yuan C, Wible JR, Zhang J, Georgi JA. The earliest known eutherian mammal. Nature. 2002;416(6883):816–22. https://doi.org/10.1038/416816a.
Khan I, Maldonado E, Vasconcelos V, O’Brien SJ, Johnson WE, Antunes A. Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments. BMC Genomics. 2014;15:1–18.
Wu D-d, Irwin DM. Evolution of Trichocye keratin-associated proteins. Adv Exp Med Biol. 2018;1054:978–81.
Forslund SK. Advances and applications in the quest for Orthologs. Mol Biol Evol. 2019;36(10):2157–64. https://doi.org/10.1093/molbev/msz150.