Dual serial vortex-induced energy harvesting system for enhanced energy harvesting

AIP Advances - Tập 8 Số 7 - 2018
Shengxi Zhou1, Junlei Wang2
12School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450000, China
2School of Chemical Engineering and Energy, Zhengzhou University 2 , Zhengzhou 450000, China

Tóm tắt

This paper presents a novel dual serial vortex-induced vibration energy harvesting system for enhanced energy harvesting. It consists of two identical cantilever-based piezoelectric vortex-induced vibration energy harvesters, which are successively installed in one plane (which is paralleled with the wind flow direction) of the wind tunnel. The Lattice Boltzmann method is employed to predict the strength of vortex-induced vibrations and the pressure distribution around the circular cylinders of the harvesters. The numerical results qualitatively explain the influence of the space distance on the energy harvesting performance of the presented system. Experimental results verify the numerical analysis and demonstrate a higher energy harvesting efficiency of the presented system over its traditional single harvester. In detail, experimental results indicate that the effective wind speed range and the output power area of a coupled harvester in the presented system can be as many as 2.67 times and 6.79 times of that of the traditional single harvester, respectively.

Từ khóa


Tài liệu tham khảo

2015, Adv. Mater., 27, 7752, 10.1002/adma.201502513

2015, Smart. Struct. Syst., 24, 065039, 10.1088/0964-1726/24/6/065039

2017, Appl. Phys. Lett., 110, 18, 10.1063/1.4982717

2018, Commun. Nonlinear. Sci., 61, 271, 10.1016/j.cnsns.2018.02.017

2018, Appl. Phys. Lett., 112, 143901, 10.1063/1.5019907

2013, Appl. Phys. Lett., 102, 101301, 10.1063/1.4803445

2018, J. Microelectromech. Syst., 27, 276, 10.1109/jmems.2018.2792686

2017, J. Intell. Mater. Syst. Struct., 29, 1102, 10.1177/1045389x17730917

2017, Appl. Phys. Lett., 110, 143902, 10.1063/1.4979832

2017, Appl. Phys. Lett., 110, 163904, 10.1063/1.4981256

2018, Joule, 2, 642, 10.1016/j.joule.2018.03.011

2018, J. Vib. Acoust., 140, 021009, 10.1115/1.4038033

2017, Geofluids, 2, 1, 10.1155/2017/6439401

2014, Math. Probl. Eng., 567357

2015, Appl. Phys. Lett., 106, 244103, 10.1063/1.4922876

2011, J. Appl. Phys., 109, 026104, 10.1063/1.3525045

2016, Sensors, 16, 1101, 10.3390/s16071101

2016, Int. J. Eng. Sci., 100, 112, 10.1016/j.ijengsci.2015.10.006

2017, Smart. Struct. Syst., 19, 67, 10.12989/sss.2017.19.1.067

2015, J. Sound. Vib., 339, 290, 10.1016/j.jsv.2014.11.034

2014, Smart. Mater. Struct., 23, 104012, 10.1088/0964-1726/23/10/104012

2013, Smart. Mater. Struct., 22, 125003, 10.1088/0964-1726/22/12/125003

2011, J. Vib. Acoust., 133, 011010, 10.1115/1.4002788

2017, Appl. Energy, 207, 61, 10.1016/j.apenergy.2017.06.041

2012, Smart. Mater. Struct., 21, 025007, 10.1088/0964-1726/21/2/025007

2014, Appl. Phys. Lett., 104, 021919, 10.1063/1.4861927

2012, Smart. Mater. Struct., 21, 045003, 10.1088/0964-1726/21/4/045003

J. Sensors, 2016, 1

2017, Appl. Phys. Lett., 111, 073904, 10.1063/1.4999765

2012, J. Fluid. Struct., 28, 103, 10.1016/j.jfluidstructs.2011.08.005

2016, J. Fluid. Struct., 61, 324, 10.1016/j.jfluidstructs.2015.11.018

2017, J. Intell. Mater. Syst. Struct., 28, 367, 10.1177/1045389x16645862

2017, Transport. Res. D-Tr. E, 52, 202, 10.1016/j.trd.2017.03.012

2012, Fluid. Dyn. Res., 44, 024001, 10.1088/0169-5983/44/2/024001

2018, Chem. Eng. Sci., 184, 273, 10.1016/j.ces.2018.03.042