Dual role of nNOS in ischemic injury and preconditioning
Tóm tắt
Nitric oxide (NO) is cardioprotective and a mediator of ischemic preconditioning (IP). Endothelial nitric oxide synthase (eNOS) is protective against myocardial ischemic injury and a component of IP but the role and location of neuronal nitric oxide synthase (nNOS) remains unclear. Therefore, the aims of these studies were to: (i) investigate the role of nNOS in ischemia/reoxygenation-induced injury and IP, (ii) determine whether its effect is species-dependent, and (iii) elucidate the relationship of nNOS with mitoKATP channels and p38MAPK, two key components of IP transduction pathway. Ventricular myocardial slices from rats and wild and nNOS knockout mice, and right atrial myocardial slices from human were subjected to 90 min ischemia and 120 min reoxygenation (37°C). Specimens were randomized to receive various treatments (n = 6/group). Both the provision of exogenous NO and the inhibition of endogenous NO production significantly reduced tissue injury (creatine kinase release, cell necrosis and apoptosis), an effect that was species-independent. The cardioprotection seen with nNOS inhibition was as potent as that of IP, however, in nNOS knockout mice the cardioprotective effect of non-selective NOS (L-NAME) and selective nNOS inhibition and also that of IP was blocked while the benefit of exogenous NO remained intact. Additional studies revealed that the cardioprotection afforded by exogenous NO and by inhibition of nNOS were unaffected by the mitoKATP channel blocker 5-HD, although it was abrogated by p38MAPK blocker SB203580. nNOS plays a dual role in ischemia/reoxygenation in that its presence is necessary to afford cardioprotection by IP and its inhibition reduces myocardial ischemic injury. The role of nNOS is species-independent and exerted downstream of the mitoKATP channels and upstream of p38MAPK.
Tài liệu tham khảo
Bolli R: Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001, 33: 1897-1918. 10.1006/jmcc.2001.1462.
Andrew PJ, Mayer B: Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999, 43: 521-531. 10.1016/S0008-6363(99)00115-7.
Takimoto Y, Aoyama T, Tanaka K, Keyamura R, Yui Y, Sasayama S: Augmented expression of neuronal nitric oxide synthase in the atria parasympathetically decreases heart rate during acute myocardial infarction in rats. Circulation. 2002, 105: 490-496. 10.1161/hc0402.102662.
Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC: Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA. 1999, 96: 657-662. 10.1073/pnas.96.2.657.
Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, et al: Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA. 2001, 98: 14126-14131. 10.1073/pnas.241380298.
Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, et al: Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res. 2003, 92: e52-9. 10.1161/01.RES.0000064585.95749.6D.
Jumrussirikul P, Dinerman J, Dawson TM, Dawson VL, Ekelund U, Georgakopoulos D, et al: Interaction between neuronal nitric oxide synthase and inhibitory G protein activity in heart rate regulation in conscious mice. J Clin Invest. 1998, 102: 1279-1285. 10.1172/JCI2843.
Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Bolli R: Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription1/3 pathway. Circulation. 2007, 116: 535-544. 10.1161/CIRCULATIONAHA.107.689471.
Takimoto Y, Aoyama T, Keyamura R, Shinoda E, Hattori R, Yui Y, et al: Differential expression of three types of nitric oxide synthase in both infarcted and non-infarcted left ventricles after myocardial infarction in the rat. Int J Cardiol. 2000, 76: 135-145. 10.1016/S0167-5273(00)00394-6.
Jones SP, Girod WG, Huang PL, Lefer DJ: Myocardial reperfusion injury in neuronal nitric oxide synthase deficient mice. Coron Artery Dis. 2000, 11: 593-597. 10.1097/00019501-200012000-00004.
Sumeray MS, Rees DD, Yellon DM: Infarct size and nitric oxide synthase in murine myocardium. J Mol Cell Cardiol. 2000, 32: 35-42. 10.1006/jmcc.1999.1050.
Wang Y, Kodani E, Wang J, Zhang SX, Takano H, Tang XL, et al: Cardioprotection during the final stage of the late phase of ischemic preconditioning is mediated by neuronal NO synthase in concert with cyclooxygenase-2. Circ Res. 2004, 95: 84-91. 10.1161/01.RES.0000133679.38825.a6.
Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA: Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994, 265: 1883-1885. 10.1126/science.7522345.
Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Vanden Hoek TL: ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 2003, 284: H299-308.
Sasaki N, Sato T, Ohler A, O'Rourke B, Marban E: Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation. 2000, 101: 439-445.
Wang Y, Kudo M, Xu M, Ayub A, Ashraf M: Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide. J Mol Cell Cardiol. 2001, 33: 2037-2046. 10.1006/jmcc.2001.1468.
Rakhit RD, Edwards RJ, Mockridge JW, Baydoun AR, Wyatt AW, Mann GE, et al: Nitric oxide-induced cardioprotection in cultured rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2000, 278: H1211-7.
Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV: Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol. 2000, 32: 1159-1167. 10.1006/jmcc.2000.1152.
Loubani M, Galiñanes M: Pharmacological and ischemic preconditioning of the human myocardium: mitoK(ATP) channels are upstream and p38MAPK is downstream of PKC. BMC Physiol. 2002, 2: 10-10.1186/1472-6793-2-10.
Kim SO, Xu Y, Katz S, Pelech S: Cyclic GMP-dependent and -independent regulation of MAP kinases by sodium nitroprusside in isolated cardiomyocytes. Biochim Biophys Acta. 2000, 1496: 277-284. 10.1016/S0167-4889(00)00026-4.
Wang D, Yu X, Brecher P: Nitric oxide and N-acetylcysteine inhibit the activation of mitogen-activated protein kinases by angiotensin II in rat cardiac fibroblasts. J Biol Chem. 1998, 273: 33027-33034. 10.1074/jbc.273.49.33027.
Jun CD, Pae HO, Kwak HJ, Yoo JC, Choi BM, Oh CD, et al: Modulation of nitric oxide-induced apoptotic death of HL-60 cells by protein kinase C and protein kinase A through mitogen-activated protein kinases and CPP32-like protease pathways. Cell Immunol. 1999, 194: 36-46. 10.1006/cimm.1999.1480.
Lu X-M, Zhang G-X, Yu Y-Q, Kimura S, Nishiyama A, Matsuyoshi H, et al: The opposite roles of nNOS in cardiac ischemia-reperfusion-induced injury and in ischemia preconditioning-induced cardioprotection in mice. J Phsyiol Sci. 2009, 59: 253-262. 10.1007/s12576-009-0030-1.
Hassouna A, Matata BM, Galiñanes M: PKC-epsilon is upstream and PKC-alpha is downstream of mitoKATP channels in the signal transduction pathway of ischemic preconditioning of human myocardium. Am J Physiol Cell Physiol. 2004, 287: C1418-C1425. 10.1152/ajpcell.00144.2004.
Callsen D, Brune B: Role of mitogen-activated protein kinases in S-nitrosoglutathione-induced macrophage apoptosis. Biochemistry. 1999, 38: 2279-2286. 10.1021/bi982292a.
Zhang JG, Galiñanes M: Role of the L-arginine/nitric oxide pathway in ischaemic/reoxygenation injury of the human myocardium. Clin Sci (Lond). 2000, 99: 497-504. 10.1042/CS20000083.
Ghosh S, Standen NB, Galiñanes M: Preconditioning the human myocardium by simulated ischemia: studies on the early and delayed protection. Cardiovasc Res. 2000, 45: 339-350. 10.1016/S0008-6363(99)00353-3.
Handy RL, Moore PK: A comparison of the effects of L-NAME, 7-NI and L-NIL on carrageenan-induced hindpaw oedema and NOS activity. Br J Pharmacol. 1998, 123: 1119-1126. 10.1038/sj.bjp.0701735.
