Dual function adsorbent-catalyst CuO-CeO2/NaX for temperature swing oxidation of benzene, toluene and xylene

Central European Journal of Chemistry - Tập 12 - Trang 492-501 - 2014
Aurimas Urbutis1, Saulius Kitrys1
1Department of Physical Chemistry, Kaunas University of Technology, Kaunas, Lithuania

Tóm tắt

A less common cyclic process of decontamination of benzene, toluene and o-xylene (BTX) using a dual function adsorbent-catalyst, referred to as the temperature swing oxidation, is introduced and discussed in this research. Preparation technique and characterization of the dual function adsorbent-catalyst CuO-CeO2/NaX are presented. The temperature swing oxidation of BTX consists of two stages: adsorption of the VOC from the stream saturating the adsorbent-catalyst at different levels and catalytic oxidation of concentrated VOC induced by raising bed temperature at different flow rates of regenerative air. The results indicate that at lower saturation levels and lower flow rates of regenerative air a complete oxidation performance is better. The highest obtained values of the overall conversion of toluene, o-xylene and benzene into CO2 and H2O were 99.3, 99.8 and 77.5%, respectively, proving that the temperature swing oxidation using a dual function adsorbent-catalyst is a promising VOC decontamination technique under properly selected operating conditions.

Tài liệu tham khảo

C.B. Hirschmann, S. Sinisalo, J. Uotila, S. Ojala, R.L. Keiski, Vib. Spectrosc. 68, 170 (2013) G. Schauberger, M. Piringer, W. Knauder, E. Petz, Atmos. Environ. 45(9), 1639 (2011) X. Fan, T.L. Zhu, M.Y. Wang, X.M. Li, Chemosphere 75(10), 1301 (2009) J. Chi-Sheng Wu, T.Y. Chang, Catal. Today 44, 111 (1998) L. Wang, T.P. Tran, D.V. Vo, M. Sakurai, H. Kameyama, Appl. Catal. A-Gen. 350(2), 150 (2008) J.C-S. Wu, Z.A. Lin, F.M. Tsai, J.W. Pan, Catal. Today 63, 419 (2000) Z. Abbasi, M. Haghighi, E. Fatehifar, S. Saedy, J. Hazard. Mater. 186, 1445 (2011) M. Hosseini, T. Barakat, R. Cousin, A. Aboukais, B.L. Su, G. De Weireld, S. Siffert, Appl. Catal. B-Environ. 111–112, 218 (2012) S.K. Agarwal, J.J. Spivey, J.B. Butt, Appl. Catal. A-Gen. 82(2), 259 (1992) S.W. Baek, J.R. Kim, S.K. Ihm, Catal. Today 93–95, 575 (2004) P.S. Chintawar, H.L. Greene, Appl. Catal. B-Environ. 14, 37 (1997) M.A. Kolade, A. Kogelbauer, E. Alpay, Chem. Eng. Sci. 64(6), 1167 (2009) M. Brazlauskas, S. Kitrys, Chin. J. Catal. 29(1), 25 (2008) A. Jaskunas, M. Brazlauskas, S. Kitrys, Adsorpt. Sci. Technol. 28(6), 485 (2010) U. Roland, M. Kraus, F. Holzer, U. Trommler, F.D. Kopinke, Appl. Catal. A-Gen. (2013), http://dx.doi.org/10.1016/j.apcata.2013.05.013 M. Konsolakis, S.A.C. Carabineiro, P.B. Tavares, J.L. Figueiredo, J. Hazard. Mater., 26, 512 (2013) D. Delimaris, T. Ioannides, Appl. Catal. B-Environ. 89, 295 (2009) U. Menon, H. Poelman, V. Bliznuk, V.V. Galvita, D. Poelman, G.B. Marin, J. Catal. 295, 91 (2012) C.H. Wang, S.S. Lin, C.L. Chen, H.S. Weng, Chemosphere 64(3), 503 (2006) S. Scire, S. Minico, C. Crisafulli, Appl. Catal. B-Environ. 45, 117 (2003) H. Einaga, Y. Teraoka, A. Ogata, J. Catal. 305, 227 (2013) K. Fuku, M. Goto, T. Sakano, T. Kamegawa, K. Mori, H. Yamashita, Catal. Today 201, 57 (2013) I. Maupin, J. Mijoin, T. Belin, C. Morais, V. Montouillout, D. Duprez, N. Bion, J. Catal. 300, 136 (2013) C. Strydom, C. van Vuuren, J. Therm. Anal. Calorim. 32(1), 157 (1987) Z. Liu, S. Zhang, J. Li, L. Ma, Appl. Catal. B-Environ. 144, 90 (2014) S. Li, H. Zhu, Z. Qin, G. Wang, Y. Zhang, Z. Wu, Z. Li, G. Chen, W. Dong, Z. Wu, L. Zheng, J. Zhang, T. Hu, J. Wang, Appl. Catal. B-Environ. 144, 498 (2014) M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 4th edition (Elsevier, Amsterdam, 2001) U. Menon, V.V. Galvita, G.B. Marin, J. Catal. 283, 1 (2011) S.C. Kim, W.G. Shim, Environ. Technol. 29(5), 535 (2008) A. Urbutis, S. Kitrys, Chemija 24(2), 111 (2013) H. Teng, J. Wang, D. Chen, P. Liu, X. Wang, J. Membr. Sci. 381, 197 (2011) Q. Huang, H. Vinh-Thang, A. Malekian, M. Eic, D. Trong-On, S. Kaliaguine, Microporous Mesoporous Mat. 87(3), 224 (2006)