Drug synergy as a strategy for compression of morbidity in a Caenorhabditis elegans model of Alzheimer’s disease
Tóm tắt
Alzheimer’s disease (AD) is the most common cause of dementia worldwide. AD is a multifactorial disease with simultaneous occurrence of several connected pathological processes including mitochondrial dysfunction and impaired proteostasis. Most of these are also implicated in organismal aging per se. The presence of separable pathological conditions poses the opportunity to try combination treatments that target these different processes separately. This approach may provide an effective strategy to target AD; therefore, we investigated whether a combination of metformin (targeting mitochondria and energy metabolism) and lithium (targeting proteostasis) could result in synergistic benefits. In this perspective paper, we looked for benefits in lifespan and healthspan using a transgenic nematode strain, GRU102, which expresses pan-neuronal human amyloid-beta (Aβ). Individually, metformin and lithium extended the lifespan of both non-transgenic GRU101 controls and GRU102. Combination treatment using metformin and lithium did not result in any synergistic increase in GRU102 lifespan, but this treatment did result in a significant compression of morbidity when compared with each individual drug, resulting in relative and absolute extension of healthspan. Despite over-expressing pathogenic human Aβ in their neurons, GRU102 worms treated with the combination treatment enjoyed longer lifespans and significantly compressed morbidity, even compared with untreated non-transgenic animals. These findings suggest combination treatment as a strategy to compress morbidity, and highlight the distinction between healthspan and lifespan.
Tài liệu tham khảo
Admasu TD, Chaithanya Batchu K, Barardo D, Ng LF, Lam VYM, Xiao L et al (2018) Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling. Dev Cell 47(1):67–79.e65. https://doi.org/10.1016/j.devcel.2018.09.001
Ahmad W, Ebert PR (2017) Metformin attenuates abeta pathology mediated through levamisole sensitive nicotinic acetylcholine receptors in a C. elegans model of Alzheimer’s disease. Mol Neurobiol 54(7):5427–5439. https://doi.org/10.1007/s12035-016-0085-y
Anderson PW (1972) More is different. Science 177(4047):393–396. https://doi.org/10.1126/science.177.4047.393
Anisimov VN (2013) Metformin: do we finally have an anti-aging drug? Cell Cycle 12(22):3483–3489. https://doi.org/10.4161/cc.26928
Austad SN (2016) The geroscience hypothesis: is it possible to change the rate of aging? In: Sierra F, Kohanski R (eds) Advances in Geroscience. Springer International Publishing, Cham, pp 1–36
Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, Mukherjee J, Currie CJ (2014) Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16(11):1165–1173. https://doi.org/10.1111/dom.12354
Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA (2016) Metformin as a tool to target aging. Cell Metab 23(6):1060–1065. https://doi.org/10.1016/j.cmet.2016.05.011
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8(23):38022–38043. https://doi.org/10.18632/oncotarget.16723
Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T et al (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239. https://doi.org/10.1016/j.cell.2013.02.035
Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, Bjedov I, Partridge L (2016) Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep 15(3):638–650. https://doi.org/10.1016/j.celrep.2016.03.041
Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 4:195–214. https://doi.org/10.1016/j.trci.2018.03.009
De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J et al (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A 111(24):E2501–E2509. https://doi.org/10.1073/pnas.1321776111
DiTacchio KA, Heinemann SF, Dziewczapolski G (2015) Metformin treatment alters memory function in a mouse model of Alzheimer’s disease. J Alzheimers Dis 44(1):43–48. https://doi.org/10.3233/jad-141332
Finkel T (2005) Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 6(12):971–976. https://doi.org/10.1038/nrm1763
Fong S, Teo E, Ng LF, Chen CB, Lakshmanan LN, Tsoi SY, Moore PK, Inoue T, Halliwell B, Gruber J (2016) Energy crisis precedes global metabolic failure in a novel caenorhabditis elegans Alzheimer disease model. Sci Rep 6:33781. https://doi.org/10.1038/srep33781
Goldberg J, Currais A, Prior M, Fischer W, Chiruta C, Ratliff E, Daugherty D, Dargusch R, Finley K, Esparza-Moltó PB, Cuezva JM, Maher P, Petrascheck M, Schubert D (2018) The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell 17(2). https://doi.org/10.1111/acel.12715
Gong CX, Liu F, Iqbal K (2018) Multifactorial hypothesis and multi-targets for Alzheimer’s disease. J Alzheimers Dis 64(s1):S107–s117. https://doi.org/10.3233/jad-179921
Hansen M, Kennedy BK (2016) Does longer lifespan mean longer healthspan? Trends Cell Biol 26(8):565–568. https://doi.org/10.1016/j.tcb.2016.05.002
Hara Y, McKeehan N, Fillit HM (2019) Translating the biology of aging into novel therapeutics for Alzheimer disease. Neurology 92(2):84–93. https://doi.org/10.1212/wnl.0000000000006745
Heard DS, Tuttle CSL, Lautenschlager NT, Maier AB (2018) Repurposing proteostasis-modifying drugs to prevent or treat age-related dementia: a systematic review. Front Physiol 9:1520. https://doi.org/10.3389/fphys.2018.01520
Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909):808–814. https://doi.org/10.1038/nature01135
Kasuya J, Kaas G, Kitamoto T (2009) Effects of lithium chloride on the gene expression profiles in drosophila heads. Neurosci Res 64(4):413–420. https://doi.org/10.1016/j.neures.2009.04.015
Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: linking aging to chronic disease. Cell 159(4):709–713. https://doi.org/10.1016/j.cell.2014.10.039
Kennedy BK, Pennypacker JK (2014) Drugs that modulate aging: the promising yet difficult path ahead. Transl Res 163(5):456–465. https://doi.org/10.1016/j.trsl.2013.11.007
Kerr F, Bjedov I, Sofola-Adesakin O (2018) Molecular mechanisms of lithium action: switching the light on multiple targets for dementia using animal models. Front Mol Neurosci 11:297. https://doi.org/10.3389/fnmol.2018.00297
Kerr, F., Sofola-Adesakin, O., Ivanov, D. K., Gatliff, J., Gomez Perez-Nievas, B., Bertrand, H. C., . . . Partridge, L. (2017). Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer’s disease. 13(3), e1006593. doi:https://doi.org/10.1371/journal.pgen.1006593
Khan A, Jamwal S, Bijjem KR, Prakash A, Kumar P (2015) Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3beta modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience 287:66–77. https://doi.org/10.1016/j.neuroscience.2014.12.018
Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, Detre JA, Wolk DA, Arnold SE (2017) Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord 31(2):107–113. https://doi.org/10.1097/wad.0000000000000202
Licht RW (2012) Lithium: still a major option in the management of bipolar disorder. CNS Neurosci Ther 18(3):219–226. https://doi.org/10.1111/j.1755-5949.2011.00260.x
Lu DY, Lu TR, Yarla NS, Wu HY, Xu B, Ding J, Zhu H (2017) Drug combination in clinical cancer treatments. Rev Recent Clin Trials 12(3):202–211. https://doi.org/10.2174/1574887112666170803145955
Matthes F, Hettich MM, Ryan DP, Ehninger D, Krauss S (2015) The anti-diabetic drug metformin improves cognitive impairment and reduces amyloid-beta in a mouse model of Alzheimer’s disease. Alzheimer Dementia 11(7):P845. https://doi.org/10.1016/j.jalz.2015.06.1880
McColl G, Killilea DW, Hubbard AE, Vantipalli MC, Melov S, Lithgow GJ (2008) Pharmacogenetic analysis of lithium-induced delayed aging in caenorhabditis elegans. J Biol Chem 283(1):350–357. https://doi.org/10.1074/jbc.M705028200
Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R (2015) Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci 3:283–303. https://doi.org/10.1146/annurev-animal-022114-110829
Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1):e8758. https://doi.org/10.1371/journal.pone.0008758
Piskovatska, V., Stefanyshyn, N., Storey, K. B., Vaiserman, A. M., & Lushchak, O. (2019). Metformin as a geroprotector: experimental and clinical evidence. 20(1), 33-48. doi:https://doi.org/10.1007/s10522-018-9773-5
Polvikoski T, Sulkava R, Rastas S, Sutela A, Niinisto L, Notkola IL et al (2006) Incidence of dementia in very elderly individuals: a clinical, neuropathological and molecular genetic study. Neuroepidemiology 26(2):76–82. https://doi.org/10.1159/000090252
Roell KR, Reif DM, Motsinger-Reif AA (2017) An introduction to terminology and methodology of chemical synergy-perspectives from across disciplines. Front Pharmacol 8:158. https://doi.org/10.3389/fphar.2017.00158
Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170(7):1101–1111. https://doi.org/10.1083/jcb.200504035
Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC (2008) A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum Mol Genet 17(2):170–178. https://doi.org/10.1093/hmg/ddm294
Sarkar S, Rubinsztein DC (2006) Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2(2):132–134
Sery O, Povova J, Misek I, Pesak L, Janout V (2013) Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol 51(1):1–9
Sierra F (2016) The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb Perspect Med 6(4):a025163. https://doi.org/10.1101/cshperspect.a025163
Sierra F, Kohanski R (2017) Geroscience and the trans-NIH geroscience interest group, GSIG. Geroscience 39(1):1–5. https://doi.org/10.1007/s11357-016-9954-6
Sofola O, Kerr F, Rogers I, Killick R, Augustin H, Gandy C, Allen MJ, Hardy J, Lovestone S, Partridge L (2010) Inhibition of GSK-3 ameliorates abeta pathology in an adult-onset drosophila model of Alzheimer’s disease. PLoS Genet 6(9):e1001087. https://doi.org/10.1371/journal.pgen.1001087
Sofola-Adesakin O, Castillo-Quan JI, Rallis C, Tain LS, Bjedov I, Rogers I, Li L, Martinez P, Khericha M, Cabecinha M, Bähler J, Partridge L (2014) Lithium suppresses abeta pathology by inhibiting translation in an adult drosophila model of Alzheimer’s disease. Front Aging Neurosci 6:190. https://doi.org/10.3389/fnagi.2014.00190
Strogatz, S. H. (2014). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering CRC press
Tam ZY, Gruber J, Ng LF, Halliwell B, Gunawan R (2014) Effects of lithium on age-related decline in mitochondrial turnover and function in caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 69(7):810–820. https://doi.org/10.1093/gerona/glt210
Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B, Jönsson L, Liu Z, Prince M (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13(1):1–7. https://doi.org/10.1016/j.jalz.2016.07.150
Zainabadi K (2018) A brief history of modern aging research. Exp Gerontol 104:35–42. https://doi.org/10.1016/j.exger.2018.01.018
Zarse K, Terao T, Tian J, Iwata N, Ishii N, Ristow M (2011) Low-dose lithium uptake promotes longevity in humans and metazoans. Eur J Nutr 50(5):387–389. https://doi.org/10.1007/s00394-011-0171-x