Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment

Nature Communications - Tập 4 Số 1
Scott C. Baraban1, Matthew T. Dinday2, G.A. Hortopan2
1University of California, San Francisco, San Francisco, United States
2Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, Box 0520, 513 Parnassus Avenue San Francisco, California 94143, USA,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Harkin, L. A. et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 130, 843–852 (2007).

Mulley, J. C. et al. SCN1A mutations and epilepsy. Hum. Mutat. 25, 535–542 (2005).

Ceulemans, B. P., Claes, L. R. & Lagae, L. G. Clinical correlations of mutations in the SCN1A gene: from febrile seizures to severe myoclonic epilepsy in infancy. Pediatr. Neurol. 30, 236–243 (2004).

Bender, A. C. et al. SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome. Epilepsy Behav. 23, 177–186 (2012).

Catterall, W. A., Kalume, F. & Oakley, J. C. NaV1.1 channels and epilepsy. J. Physiol. 588, 1849–1859 (2010).

Kim, D. Y. et al. Reduced sodium channel Na(v)1.1 levels in BACE1-null mice. J. Biol. Chem. 286, 8106–8116 (2011).

Chen, C. et al. Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J. Neurosci. 24, 4030–4042 (2004).

Yu, F. H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142–1149 (2006).

Oakley, J. C. et al. Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proc. Natl Acad. Sci. USA 106, 3994–3999 (2009).

Cheah, C. S. et al. Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proc. Natl Acad. Sci. USA 109, 14646–14651 (2012).

Ogiwara, I. et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903–5914 (2007).

Lessman, C. A. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res. C. Embryo Today 93, 268–280 (2011).

Delvecchio, C., Tiefenbach, J. & Krause, H. M. The zebrafish: a powerful platform for in vivo, HTS drug discovery. Assay Drug Dev. Technol. 9, 354–361 (2011).

Rinkwitz, S., Mourrain, P. & Becker, T. S. Zebrafish: an integrative system for neurogenomics and neurosciences. Prog. Neurobiol. 93, 231–243 (2011).

Novak, A. E. et al. Embryonic and larval expression of zebrafish voltage-gated sodium channel alpha-subunit genes. Dev. Dyn. 235, 1962–1973 (2006).

Schoonheim, P. J., Arrenberg, A. B., Del Bene, F. & Baier, H. Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J. Neurosci. 30, 7111–7120 (2010).

Martin, M. S. et al. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum. Mol. Genet. 16, 2892–2899 (2007).

Jordan, C., Kwan, H. C. & Francke, U. Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med. Genet. 8, 36 (2007).

Lopez, M. et al. Expression of the somatolactin β gene during zebrafish embryonic development. Gene Expr. Patterns 6, 156–161 (2006).

Blasiole, B. et al. Cloning, mapping, and developmental expression of a sixth zebrafish Na, K-ATPase alpha1 subunit gene (atp1a1a.5). Mech. Dev. 119, (Suppl 1): S211–S214 (2002).

Noam, Y., Bernard, C. & Baram, T. Z. Towards an integrated view of HCN channel role in epilepsy. Curr. Opin. Neurobiol. 21, 873–879 (2011).

Avedissian, M. et al. Hippocampal gene expression analysis using the ORESTES methodology shows that homer 1a mRNA is upregulated in the acute period of the pilocarpine epilepsy model. Hippocampus 17, 130–136 (2007).

Tongiorgi, E. et al. Brain-derived neurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events that trigger epileptogenesis. J. Neurosci. 24, 6842–6852 (2004).

Baraban, S. C. et al. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48, 1151–1157 (2007).

Hortopan, G. A., Dinday, M. T. & Baraban, S. C. Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J. Neurosci. 30, 13718–13728 (2010).

Hunt, R. F., Hortopan, G. A., Gillespie, A. & Baraban, S. C. A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp. Neurol. 237, 199–206 (2012).

Baraban, S. C., Taylor, M. R., Castro, P. A. & Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131, 759–768 (2005).

Chege, S. W., Hortopan, G. A., Dinday, M. T. & Baraban, S. C. Expression and function of KCNQ channels in larval zebrafish. Dev. Neurobiol. 72, 186–198 (2012).

Ellis, L. D., Seibert, J. & Soanes, K. H. Distinct modes of induced hyperactivity in zebrafish larvae. Brain Res. 1449, 46–59 (2012).

Dravet, C. et al. Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv. Neurol. 95, 71–102 (2005).

Taylor, M. R., Hurley, J. B., Van Epps, H. A. & Brockerhoff, S. E. A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc. Natl Acad. Sci. USA 101, 4584–4589 (2004).

Berghmans, S., Hunt, J., Roach, A. & Goldsmith, P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res. 75, 18–28 (2007).

Baxendale, S. et al. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis. Model. Mech. 5, 773–774 (2012).

Cario, C. L., Farrell, T. C., Milanese, C. & Burton, E. A. Automated measurement of zebrafish larval movement. J. Physiol. 589, 3703–3708 (2011).

Winter, M. J. et al. Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J. Pharm. Tox. Methods 5, 176–187 (2008).

Orellana-Paucar, A. M. et al. Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy Behav. 24, 14–22 (2012).

Hadra, R. & Millichap, J. G. Quantitative assessment of motor function in cerebral palsy: evaluation of zoxazolamine (flexin), a new muscular relaxant agent. Neurology 6, 843–852 (1956).

Sakitama, K. The effects of centrally acting muscle relaxants on the intrathecal noradrenaline-induced facilitation of the flexor reflex mediated by group II afferent fibers in rats. Jpn J. Pharmacol. 63, 369–736 (1993).

Finkelstein, M., Kromer, C. M., Sweeney, S. A. & Delahunt, C. S. Some aspects of the pharmacology of clemizole hydrochloride. J. Am. Pharm. Assoc. Am. Pharm. Assoc. 49, 18–22 (1960).

Einav, S., Sobol, H. D., Gehrig, E. & Glenn, J. S. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat. Biotechnol. 26, 1019–1027 (2008).

Miller, I. O. & Sotero de Menezes, M. inGeneReviews™ (Internet) eds Pagon R. A., Bird T. D., Dolan C. R., Stephens K., Adam M. P. University of Washington: Seattle, (2007).

Afrikanova, T. et al. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 8, e54166 (2013).

de Toffol, B. et al. ESPERA study: Applicability of the new ILAE criteria for antiepileptic drug resistance of focal epilepsies in current clinical practice. Epilepsy Behav. 25, 166–169 (2012).

Loscher, W. & Schmidt, D. Modern antiepileptic drug development has failed to deliver: Ways out of the current dilemma. Epilepsia 52, 657–658 (2011).

Bialer, M. & White, H. S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov. 9, 10–19 (2012).

Cao, D. et al. Efficacy of stiripentol in hyperthermia-induced seizures in a mouse model of Dravet syndrome. Epilepsia 53, 1140–1145 (2012).

Han, S. et al. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

Yamada, K., Takizawa, F., Tamura, T. & Kanda, T. The effect of antihistamines on seizures induced by increasing-current electroshocks: ketotifen, but not olopatadine, promotes the seizures in infant rats. Biol. Pharm. Bull. 35, 693–697 (2012).

Miyata, I., Saegusa, H. & Sakurai, M. Seizure-modifying potential of histamine H1 antagonists: a clinical observation. Pediatr. Int. 53, 706–708 (2011).