Drug development in Alzheimer’s disease: the path to 2025

Jeffrey L. Cummings1, Paul M. Thompson2, Bruno Dubois3, Lutz Frölich4, Clifford R. Jack5, Roy Jones6, John C. Morris7, Joel Raskin8, Sherie A. Dowsett9, Philip Scheltens10
1Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
2University of Southern California San Diego, CA, USA
3Institute for Memory and Alzheimer’s Disease (IM2A) and ICM, Salpêtrière University Hospital, Paris University, Paris, France
4Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
5Department of Radiology, Mayo Clinic, Rochester, MN, USA
6The Research Institute for the Care of Older People (RICE), Royal United Hospital, Bath, UK
7Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
8Eli Lilly and Company, Toronto, Canada
9Eli Lilly and Company, Indianapolis, IN, USA
10Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands

Tóm tắt

Abstract

The global impact of Alzheimer’s disease (AD) continues to increase, and focused efforts are needed to address this immense public health challenge. National leaders have set a goal to prevent or effectively treat AD by 2025. In this paper, we discuss the path to 2025, and what is feasible in this time frame given the realities and challenges of AD drug development, with a focus on disease-modifying therapies (DMTs). Under the current conditions, only drugs currently in late Phase 1 or later will have a chance of being approved by 2025. If pipeline attrition rates remain high, only a few compounds at best will meet this time frame. There is an opportunity to reduce the time and risk of AD drug development through an improvement in trial design; better trial infrastructure; disease registries of well-characterized participant cohorts to help with more rapid enrollment of appropriate study populations; validated biomarkers to better detect disease, determine risk and monitor disease progression as well as predict disease response; more sensitive clinical assessment tools; and faster regulatory review. To implement change requires efforts to build awareness, educate and foster engagement; increase funding for both basic and clinical research; reduce fragmented environments and systems; increase learning from successes and failures; promote data standardization and increase wider data sharing; understand AD at the basic biology level; and rapidly translate new knowledge into clinical development. Improved mechanistic understanding of disease onset and progression is central to more efficient AD drug development and will lead to improved therapeutic approaches and targets. The opportunity for more than a few new therapies by 2025 is small. Accelerating research and clinical development efforts and bringing DMTs to market sooner would have a significant impact on the future societal burden of AD. As these steps are put in place and plans come to fruition, e.g., approval of a DMT, it can be predicted that momentum will build, the process will be self-sustaining, and the path to 2025, and beyond, becomes clearer.

Từ khóa


Tài liệu tham khảo

Alzheimer’s Disease International, 2015. https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf. Accessed 25 May 2016.

Vradenburg G. A pivotal moment in Alzheimer’s disease and dementia: how global unity of purpose and action can beat the disease by 2025. Expert Rev Neurother. 2015;15:73–82. Erratum: Expert Rev Neurother. 2015;15:459.

National Alzheimer’s Project Act. http://napa.alz.org/national-alzheimers-project-act-backgroun. Accessed 25 May 2016.

Schneider LS, Mangialasche F, Adreasen N, Feldman H, Giacobini E, Jones R, et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J Intern Med. 2014;275:251–83.

Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alz Res Ther. 2014;6:37.

Schneider LS, Sano M. Current Alzheimer’s disease clinical trials: methods and placebo outcomes. Alzheimers Dement. 2009;5:388–97.

Siemers E. Drug development in AD: point of view from the industry. J Prev Alz Dis. 2015;2:216–8.

Henley DB, Sundell KL, Sethuraman G, Dowsett SA, May PC. Safety profile of semagacestat, a gamm-secretase inhibitor: IDENTITY trial findings. Curr Med Res Opin. 2014;10:2021–32.

Sugino H, Watanabe A, Amada N, Yamamoto M, Ohgi Y, Kostic D, Sanchez R. Global trends in Alzheimer disease clinical development: increasing the probability of success. Clin Ther. 2015;37:1632–42.

Andrieu S, Coley N, Lovestone S, Aisen PS, Vellas B. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol. 2015;14:926–44.

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29. Erratum in: Lancet Neurol. 2014;13:757.

Scott TJ, O’Connor AC, Link AN, Beaulieu TJ. Economic analysis of opportunities to accelerate Alzheimer’s disease research and development. New York Academy of Sciences. 2013. http://onlinelibrary.wiley.com/doi/10.1111/nyas.12417/epdf. Accessed 25 May 2016.

ALZFORUM therapeutics database. http://www.alzforum.org/therapeutics. Accessed 25 May 2016.

Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer’s disease. Lancet. 2016;388:505–17.

Hendrix JA, Bateman RJ, Brashear HR, Duggan C, Carrillo MC, Bain LJ, et al. Challenges, solutions, and recommendations for Alzheimer’s disease combination therapy. Alzheimers Dement. 2016;12:623–30.

The Alzheimer’s Prevention Registry. https://www.endalznow.org/. Accessed 25 May 2016.

The Dominantly Inherited Alzheimer Network (DIAN). https://dian-tu.wustl.edu/en/about-dian-trials-unit/. Accessed 25 May 2016.

The Brain Health Registry. http://www.brainhealthregistry.org/. Accessed 25 May 2016.

The Global Alzheimer’s Platform Initiative. www.globalalzplatform.org. Accessed 25 May 2016.

Cumming J, Aisen P, Barton R, Bork J, Doody R, Dwyer J, et al. Re-engineering Alzheimer clinical trials: Global Alzheimer’s Platform network. J Prev Alz Dis. 2016;3:114–20.

The Cleveland Clinic Healthy Brains Registry available at https://healthybrains.org/. Accessed 25 May 2016.

The Alzheimer’s Disease Cooperative Study. http://www.adcs.org/. Accessed 25 May 2016.

The Join Dementia Research Initiative. https://www.joindementiaresearch.nihr.ac.uk. Accessed 25 May 2016.

Gillette-Guyonneta S, Vellas B. The Toulouse Gérontopôle Research Center: report of activities, 2007–2011. J Alzheimers Dis. 2012;28:721–32.

van der Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis. 2014;41:313–27.

Kornhuber J, Schmidtke K, Frolich L, Perneczky R, Wolf S, Hampel H, et al. Early and differential diagnosis of dementia and mild cognitive impairment: design and cohort baseline characteristics of the German Dementia Competence Network. Dement Geriatr Cogn Disord. 2009;27:404–17.

Zahodne LB, Manly JJ, MacKay-Brandt A, Stern Y. Cognitive declines precede and predict functional declines in aging and Alzheimer’s disease. PLoS One. 2013;8:e73645.

Liu-Seifert H, Siemers E, Sundell K, Price K, Han B, Selzler K, et al. Cognitive and functional decline and their relationship in patients with mild Alzheimer’s dementia. J Alz Dis. 2015;43:949–55.

Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 2004;3:246–8.

Sarazin M, Berr C, De Rotrou J, Fabrigoule C, Pasquier F, Legrain S, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology. 2007;69:1859–67.

Wagner M, Wolf S, Reischies FM, Daerr M, Wolfsgruber S, Jessen F, et al. Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease. Neurology. 2012;78:379–86.

Jekel K, Damian M, Wattmo C, Hausner L, Bullock R, Connelly PJ, et al. Mild cognitive impairment and deficits in instrumental activities of daily living: a systematic review. Alzheimers Res Ther. 2015;18:7–17.

US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Draft guidance for industry - Alzheimer’s disease: developing drugs for the treatment of early stage disease. Feb 2013. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM338287.pdf. Accessed 25 May 2016.

Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, et al. Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Cooperative Study. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71:961–70.

Wessels AM, Siemers ER, Yu P, Andersen SW, Holdridge KC, Sims JR, et al. A combined measure of cognition and function for clinical trials: the integrated Alzheimer’s disease rating scale. J Prev Alz Dis. 2015;2:227–41.

Wang J, Logovinsky V, Hendrix SB, Stanworth SH, Perdomo C, Xu L, et al. ADCOMS: a composite clinical outcome for prodromal Alzheimer’s disease trials. J Neurol Neurosurg Psychiatry. 2016;87:993–9.

Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15:673–84.

Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement. 2016;12:110–20.

Petersen RC, Aisen P, Boeve BF, Geda YE, Ivnik RJ, Knopman DS, et al. Criteria for mild cognitive impairment due to alzheimer’s disease in the community. Ann Neurol. 2013;74:199–208.

Appleby BS, Nacopoulos D, Milano N, Zhong K, Cummings JL. A review: treatment of Alzheimer’s disease discovered in repurposed agents. Dement Geriatr Cogn Disord. 2013;35:1–22.

Appleby BS, Cummings JL. Discovering new treatments for Alzheimer’s disease by repurposing approved medications. Curr Top Med Chem. 2013;13:2306–27.

Cummings JL, Zhong K, Kinney JW, Heaney C, Moll-Tudla J, Joshi A, et al. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease. Alz Res Ther. 2016;8:4.

Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu GQ, Palop JJ, Mucke L. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A. 2012;109:E2895–903.

Cummings JL, Zhong K. Repackaging FDA-approved drugs for degenerative diseases: promises and challenges. Expert Rev Clin Pharmacol. 2014;7:161–5.

European Medicines Agency Committee for Medicinal Products for Human Use. Draft guideline on the clinical investigation of medicines for the treatment of Alzheimer’s disease and other dementias. Jan 2016 (EMA/CHMP/539931/2014). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/02/WC500200830.pdf. Accessed 25 May 2016.

CDER New Drug Review: 2015 Update. FDA/CMS Summit 2014. http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/UCM477020.pdf slide 20. Accessed 25 May 2016.

Food US, Administration D. White Paper: FDA and accelerating the development of the new pharmaceutical therapies. 2015. http://www.fda.gov/AboutFDA/ReportsManualsForms/Reports/ucm439082.htm. Accessed 25 May 2016.

Shea M, Ostermann L, Hohman R, Roberts S, Kozak M, Dull R, et al. Impact of breakthrough therapy designation on cancer drug development. Nature. 2016;15:152.

European Medicines Agency Committee for Medicinal Products for Human Use. Draft guideline on the scientific application and the practical arrangements necessary to implement the procedure for accelerated assessment pursuant to article 14(9) of regulation (EC) No 726/2004 7. Jul 2015 (EMA/CHMP/697051/2014-Rev). http://ec.europa.eu/health/files/committee/stamp/2015-10_stamp3/stamp_3_16_3b_guideline_on_accelerated_assessment_-_public_consultation.pdf. Accessed 25 May 2016.

Cummings JL, Morstorf T, Lee G. Alzheimer’s drug development pipeline: 2016. Alzheimers Dement. 2016 (in press).

Liu Q, Waltz S, Woodruff G, Ouyang J, Israel MA, Herrera C, et al. Effect of potent-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers. JAMA Neurol. 2014;71:1481–9.

Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014;515:274–8.

Innovative Medicines Initiative. http://www.imi.europa.eu/. Accessed 25 May 2016.

Prediction of cognitive properties of new drug candidates for neurodegenerative diseases in early clinical development. http://www.alzheimer-europe.org/EN/Research/PharmaCog. Accessed 25 May 2016.

European Medical Information Framework Platform http://www.emif.eu/. Accessed 25 May 2016.

European Prevention of Alzheimer’s Dementia (EPAD) Initiative. http://ep-ad.org/. Accessed 25 May 2016.

Critical Path Institute. https://c-path.org/. Accessed 25 May 2016.

Romero K, Ito K, Rogers JA, Polhamus D, Qiu R, Stephenson D, et al. The future is now: model‐based clinical trial design for Alzheimer’s disease. Clin Pharmacol Ther. 2015;97:210–4.

Global Alzheimer’s Association Interactive Network. http://www.gaain.org/. Accessed 25 May 2016.

Accelerating Medicines Partnership - Alzheimer’s Disease. https://www.nia.nih.gov/alzheimers/amp-ad. Accessed 25 May 2016.

Tariot PN, Ho C, Langlois C, Reiman EM, Lopera F, Langbaum JB, et al. The Alzheimer’s Prevention Initiative. Alzheimers Dement. 2014;10(4):247.

Toga AW, Foster I, Kesselman C, Madduri R, Chard K, Deutsch EW, et al. Big biomedical data as the key resource for discovery science. J Am Med Inform Assoc. 2015;22:1126–31.

Haas M, Stephenson D, Romero K, Gordon M, Zach N, Geerts H; Brain Health Modeling Initiative. Big data to smart data in AD: real-world examples of advanced modeling and simulation. Alzheimers Dement. 2016. [Epub ahead of print]. doi: 10.1016/j.jalz.2016.05.005.

Geerts H, Dacks PA, Devanarayan V, Haas M, Khachaturian Z, Gordon MF, Maudsley S, Romero K, Stephenson D; Brain Health Modeling Initiative (BHMI). From big data to smart data in Alzheimer’s disease. The brain health modeling initiative to foster actionable knowledge. Alzheimers Dement. 2016. [Epub ahead of print]. doi: 10.1016/j.jalz.2016.04.008.

The Alzheimer’s Drug Discovery Foundation https://www.alzdiscovery.org/. Accessed 25 May 2016.

The Cure Alzheimer’s Fund. http://www.curealz.org. Accessed 25 May 2016.

Give To Cure. http://www.givetocure.org/. Accessed 25 May 2016.