Drp1 phân bố rộng rãi nhưng không đồng đều trong hệ thần kinh trung ương của chuột

Molecular Brain - Tập 13 - Trang 1-22 - 2020
Ting-Ting Luo1,2, Chun-Qiu Dai1,3, Jia-Qi Wang1, Zheng-Mei Wang1,4, Yi Yang1,4, Kun-Long Zhang1,5, Fei-Fei Wu1, Yan-Ling Yang6, Ya-Yun Wang1
1National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
2Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
3Third Medical District, Lintong Rehabilitation and Convalescent Centre, Xi’an, China
4Medical College of Yan’an University, Yan’an, China
5Department of Rehabilitation Physiotherapy, Xi-Jing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
6Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi’an, China

Tóm tắt

Drp1 được biểu hiện rộng rãi trong hệ thần kinh trung ương của chuột và đóng vai trò trong quá trình phân chia ty thể. Nhiều bệnh lý có liên quan đến Drp1 và ty thể. Tuy nhiên, do phân bố chính xác của Drp1 chưa được quan sát cụ thể, nên khó khăn trong việc xác định tác động của các phân tử chống Drp1 lên cơ thể con người. Làm rõ phân bố cụ thể của Drp1 có thể là cách tiếp cận tốt để điều trị có mục tiêu hoặc dự đoán bệnh. Chúng tôi đã hình dung phân bố của Drp1 ở những vùng khác nhau của não và giải thích mối quan hệ giữa Drp1 và ty thể. Những con chuột GAD67-GFP knock-in đã được sử dụng để phát hiện các mẫu biểu hiện của Drp1 trong các nơron GABAergic. Chúng tôi cũng đã phân tích thêm biểu hiện của Drp1 trong mô glioma ác tính ở người. Drp1 được phân bố rộng rãi nhưng không đồng đều trong hệ thần kinh trung ương. Quan sát thêm cho thấy Drp1 được biểu hiện cao và không đồng đều trong các nơron ức chế. Dưới kính hiển vi điện tử truyền qua, phân bố của Drp1 cao hơn ở các nhánh rất nhiều so với các khu vực khác trong nơron, và chỉ một lượng nhỏ Drp1 được định vị trong ty thể. Trong glioma ác tính ở người, cường độ huỳnh quang của Drp1 tăng từ loại I-III, trong khi loại IV cho thấy xu hướng giảm. Trong nghiên cứu này, chúng tôi đã quan sát thấy sự phân bố rộng rãi không đồng đều của Drp1 trong hệ thần kinh trung ương, có thể liên quan đến sự xuất hiện và phát triển của bệnh lý thần kinh. Chúng tôi hy vọng rằng mối quan hệ giữa Drp1 và ty thể có thể sẽ hướng dẫn các liệu pháp điều trị trong lâm sàng.

Từ khóa

#Drp1 #hệ thần kinh trung ương #nơron GABAergic #glioma ác tính #ty thể

Tài liệu tham khảo

Reddy PH, et al. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev. 2011;67(1–2):103–18. Oliver D, Reddy PH. Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases. Cells. 2019;8(9). Ford MG, Jenni S, Nunnari J. The crystal structure of dynamin. Nature. 2011;477(7366):561–6. Smirnova E, et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56. Wu W, et al. OPA1 overexpression ameliorates mitochondrial cristae remodeling, mitochondrial dysfunction, and neuronal apoptosis in prion diseases. Cell Death Dis. 2019;10(10):710. Gusdon AM, et al. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol. 2017;90:1–13. Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125(Pt 9):2095–104. Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta. 2013;1833(5):1256–68. Wanders RJ, Waterham HR. Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem. 2006;75:295–332. Ren X, et al. Resveratrol ameliorates mitochondrial elongation via Drp1/Parkin/PINK1 signaling in senescent-like cardiomyocytes. Oxidative Med Cell Longev. 2017;2017:4175353. Cho B, et al. Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol. 2013;22(3):149–57. Qi Z, et al. Dynamin-related protein 1: a critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J Cell Physiol. 2019;234(7):10032–46. Gao J, et al. Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants (Basel). 2017;6(2). Gibellini L, et al. Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med. 2015;2015:527209. Guo BL, et al. Significant changes in mitochondrial distribution in different pain models of mice. Mitochondrion. 2013;13(4):292–7. Ferrari LF, et al. Role of Drp1, a key mitochondrial fission protein, in neuropathic pain. J Neurosci. 2011;31(31):11404–10. Dai CQ, et al. p53 and mitochondrial dysfunction: novel insight of neurodegenerative diseases. J Bioenerg Biomembr. 2016;48(4):337–47. Eugenio-Perez D, et al. Divide et Impera: Drp1-mediated mitochondrial fission in glioma malignancy. Yale J Biol Med. 2019;92(3):423–33. Michalska BM, et al. Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell. Sci Rep. 2018;8(1):8122. D'Agata V, et al. Distribution of parkin in the adult rat brain. Prog Neuro-Psychopharmacol Biol Psychiatry. 2002;26(3):519–27. Reference Atlas:: Allen Brain Atlas: Mouse brain.. http://mouse.brain-map.org/ (2004). Accessed 25 Jan 2004. Fontes MAP, et al. GABA-containing liposomes: neuroscience applications and translational perspectives for targeting neurological diseases. Nanomedicine. 2018;14(3):781–8. Wong CG, Bottiglieri T, Snead OC 3rd. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol. 2003;54(Suppl 6):S3–12. Solas M, Puerta E, Ramirez MJ. Treatment options in Alzheimer’s disease: the GABA story. Curr Pharm Des. 2015;21(34):4960–71. Wang YY, et al. Expression patterns of 5-HT receptor subtypes 1A and 2A on GABAergic neurons within the spinal dorsal horn of GAD67-GFP knock-in mice. J Chem Neuroanat. 2009;38(1):75–81. Wang YY, et al. The effect of serotonin on GABA synthesis in cultured rat spinal dorsal horn neurons. J Chem Neuroanat. 2008;36(3–4):150–9. Bai Y, et al. Targeted upregulation of uncoupling protein 2 within the basal ganglia output structure ameliorates dyskinesia after severe liver failure. Free Radic Biol Med. 2018;124:40–50. Dykman LA, et al. Gold nanoparticles as an adjuvant: influence of size, shape, and technique of combination with CpG on antibody production. Int Immunopharmacol. 2018;54:163–8. El-Naggar ME, et al. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles. Carbohydr Polym. 2016;136:1128–36. Zhou K, et al. Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia. Phytomedicine. 2019;59:152922. Chae U, et al. Drp1-dependent mitochondrial fission regulates p62-mediated autophagy in LPS-induced activated microglial cells. Biosci Biotechnol Biochem. 2019;83(3):409–16. Itoh K, et al. Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division. Elife. 2019;8. Li Z, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004;119(6):873–87. Verstreken P, et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron. 2005;47(3):365–78. Rangaraju V, Lauterbach M, Schuman EM. Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell. 2019;176(1–2):73–84 e15. Palmer CS, et al. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565–73. Lim TK, et al. Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain. 2015;11:58. Joshi AU, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease. Oncotarget. 2018;9(5):6128–43. Fecher C, et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat Neurosci. 2019;22(10):1731–42. Molina V, et al. Cell cycle analysis in the rat external granular layer evaluated by several bromodeoxyuridine immunoperoxidase staining protocols. Histochem Cell Biol. 2017;148(5):477–88. Stumm RK, et al. Neuronal types expressing mu- and delta-opioid receptor mRNA in the rat hippocampal formation. J Comp Neurol. 2004;469(1):107–18. Ma JT, et al. Effects of dynamin-related protein 1 regulated mitochondrial dynamic changes on invasion and metastasis of lung Cancer cells. J Cancer. 2019;10(17):4045–53. Aggarwal S, et al. Depletion of dAKAP1-protein kinase a signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem. 2019;294(9):3152–68. Tagaya M, Arasaki K. Regulation of mitochondrial dynamics and autophagy by the mitochondria-associated membrane. Adv Exp Med Biol. 2017;997:33–47. Santel A, Frank S. Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life. 2008;60(7):448–55. Chang CR, Blackstone C. Drp1 phosphorylation and mitochondrial regulation. EMBO Rep. 2007;8(12):1088–9 author reply 1089-90. Song Y, et al. Inhibition of Drp1 after traumatic brain injury provides brain protection and improves behavioral performance in rats. Chem Biol Interact. 2019;304:173–85. Kanda H, et al. Inhibition of mitochondrial fission protein reduced mechanical allodynia and suppressed spinal mitochondrial superoxide induced by Perineural human immunodeficiency virus gp120 in rats. Anesth Analg. 2016;122(1):264–72. Zhou K, et al. RIP1-RIP3-DRP1 pathway regulates NLRP3 inflammasome activation following subarachnoid hemorrhage. Exp Neurol. 2017;295:116–24. Wu Q, et al. Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury. Brain Res. 2016;1630:134–43. Tamamaki N, et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol. 2003;467(1):60–79. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16(2):109–10. Lein ES, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76. Paxinos, G. and K.B.J. Frankin, The Mouse Brain in Stereotaxic Coordinates. 2nd ed. ACADEMIC PRESS; 1997. Crossman, A.R. and D. Neary, Neuroanatomy: An Illustrated Colour Text. 5th ed. Elsevier Limited; 2015. Luo TT, et al. Distribution of mitochondrial dynamin-related protein 1 mRNAs in amygdala complex of mice based on the FISH techenique. Chin J Neuroanat. 2017;33(2):149–54. Yang YL, et al. Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury. PLoS One. 2013;8(5):e65194.