Droughts, Pluvials, and Wet Season Timing Across the Chao Phraya River Basin: A 254‐Year Monthly Reconstruction From Tree Ring Widths and δ18O

Geophysical Research Letters - Tập 49 Số 17 - 2022
Hung Nguyen1, Stefano Galelli1,2, Chenxi Xu3,4, Brendan M. Buckley1
1Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA
2Pillar of Engineering Systems and Design, Singapore University of Technology and Design, Singapore, Singapore
3Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, China
4Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Abstract

Water system operations require subannual streamflow data—e.g., monthly or weekly—that are not readily achievable with conventional streamflow reconstructions from annual tree rings. This mismatch is particularly relevant to highly seasonal rivers such as Thailand's Chao Phraya. Here, we combine tree ring width and stable oxygen isotope ratios (δ18O) from Southeast Asia to produce 254‐year, monthly‐resolved reconstructions for all four major tributaries of the Chao Phraya. From the reconstructions, we derive subannual streamflow indices to examine past hydrological droughts and pluvials, and find coherence and heterogeneity in their histories. The monthly resolution reveals the spatiotemporal variability in wet season timing, caused by interactions between early summer typhoons, monsoon rains, catchment location, and topography. Monthly‐resolved reconstructions, like the ones presented here, not only broaden our understanding of past hydroclimatic variability, but also provide data that are functional to water management and climate‐risk analyses, a significant improvement over annual reconstructions.

Từ khóa


Tài liệu tham khảo

10.1029/2021JD036109

Beguería S. &Vicente‐Serrano S. M.(2017).SPEI: Calculation of the standardised precipitation‐evapotranspiration index. R package version 1.7.

10.1073/pnas.0910827107

10.1163/22941932-90001429

10.1016/j.foreco.2007.07.018

10.1007/s00382-007-0225-1

10.1007/s00382‐016‐3297‐y

10.1007/s00382-019-04694-4

10.1029/2020EF001814

10.1029/2009JD012795

10.1126/science.1185188

10.1163/22941932-90001508

10.1029/2011gl049927

10.1016/j.jhydrol.2011.02.003

FAO. (2017).AQUASTAT database. Retrieved fromhttp://www.fao.org/aquastat/statistics/query/index.html

10.1175/1520-0450(1971)010<0845:mtfstg>2.0.co;2

10.1061/(ASCE)WR.1943-5452.0001422

10.1007/s10584-017-2084-z

Holland J. H., 1975, Adaptation in natural and artificial systems

10.1144/SP361.3

10.1175/1520-0442(2002)015<2547:doucar>2.0.co;2

McKee T. B., 1993, Eighth Conference on applied Climatology, 6

10.1111/j.1752-1688.1995.tb03388.x

10.1016/0022-1694(70)90255-6

Nguyen H. T. T.(2021).mbr: Mass‐balance regression. R package version 0.0.1.https://cran.r‐project.org/web/packages/mbr/index.html

10.5281/ZENODO.6830887

10.1002/2017WR022114

10.1029/2020WR029394

10.1029/2007WR006684

10.1029/2005WR004721

10.1029/2019GL086689

10.1016/j.jhydrol.2014.11.022

10.1007/s00382-008-0454-y

10.1029/2012JD017749

10.1002/2017WR021585

10.1029/2007GL032487

10.1016/j.jhydrol.2017.12.057

10.1175/JCLI-D-19-0270.1

10.1002/hyp.13678

10.1029/2020WR027706

10.1175/2009JCLI2909.1

10.1016/j.geomorph.2021.107658

10.1007/BF00175354

10.1029/2020GL091598

World Bank, 2011, Thailand environment monitor: Integrated water resources management ‐ a way forward, 10.1596/26741

10.1029/2018GL081458

10.1016/j.jhydrol.2015.02.037

10.1007/s00468-015-1320-2

10.1017/qua.2020.28