Dự đoán tỷ lệ thôi học và phản hồi quyết định dựa trên nhiều chuỗi tạm thời của hành vi học tập trong MOOCs
Tóm tắt
Chuỗi tạm thời của hành vi học tập là đa chiều và liên tục trong các khóa học trực tuyến đại chúng (MOOCs). Một mặt, điều này hỗ trợ các phương pháp học tập cá nhân hóa, đạt được thời gian và không gian linh hoạt. Mặt khác, nó cũng khiến các MOOCs phát sinh một số lượng lớn học viên bỏ học và hành vi học tập không hoàn thành. Dự đoán tỷ lệ thôi học và phản hồi quyết định đã trở thành một vấn đề quan trọng trong các MOOCs. Nghiên cứu này tiến hành thiết kế phương pháp và phân tích quyết định đầy đủ về xu hướng thôi học. Dựa trên một số lượng lớn các ví dụ về hành vi học tập, chúng tôi xây dựng một khung liên kết nhiều loại hành vi, thiết kế mô hình dự đoán tỷ lệ thôi học để phân tích chuỗi tạm thời của hành vi học tập, sau đó thảo luận về các biện pháp can thiệp tương ứng nhằm cung cấp cơ chế giám sát thích ứng cho việc theo dõi dài hạn và lựa chọn phương pháp học tập ngắn hạn, đồng thời cho phép phản hồi quyết định thích ứng. Toàn bộ thí nghiệm cho thấy mô hình được thiết kế có thể cải thiện hiệu suất của việc dự đoán tỷ lệ thôi học, đạt được độ tin cậy và khả thi. Nghiên cứu toàn diện này có thể cung cấp giải pháp công nghệ và quyết định chính, có giá trị lý thuyết và thực tiễn quan trọng cho nghiên cứu tỷ lệ thôi học trong các MOOCs.
Từ khóa
Tài liệu tham khảo
Anghel, E., Tobias-Littenberg, J., & Reich, J. (2022). Location in the multiverse of methods: Measuring online users’ contexts. International Journal of Social Research Methodology., 2022(9), 1–20. https://doi.org/10.1080/13645579.2022.2125648
Anttila, S., Lindfors, H., Hirvonen, R., Määttä, S., & Kiuru, N. (2022). Dropout intentions in secondary education: Student temperament and achievement motivation as antecedents. Journal of Adolescence. https://doi.org/10.1002/jad.12110
Ashenafi, M. M., Andres-Bray, J. M., Hutt, S., Baker, R. S., & Brooks, C. (2022). Controlled outputs, full data: a privacy-protecting infrastructure for mooc data. British Journal of Educational Technology., 53(4), 756–775. https://doi.org/10.1111/bjet.13231
Borrella, I., Caballero-Caballero, S., & Ponce-Cueto, E. (2022). Taking action to reduce dropout in MOOCs: Tested interventions. Computers & Education. https://doi.org/10.1016/j.compedu.2021.104412
Chanaa, A., & Faddouli, N. (2022). An analysis of learners’ affective and cognitive traits in context-aware recommender systems (CARS) using feature interactions and factorization machines (FMS). Journal of King Saud University-Computer and Information Sciences., 34(8), 4796–4809. https://doi.org/10.1016/j.jksuci.2021.06.008
Chen, J., Feng, J., Sun, X., Wu, N., & Chen, S. (2019). Mooc dropout prediction using a hybrid algorithm based on decision tree and extreme learning machine. Mathematical Problems in Engineering, 2019(1), 1–11. https://doi.org/10.1155/2019/8404653
Fu, Q., Gao, Z., Zhou, J., & Zheng, Y. (2021). CLSA: a novel deep learning model for MOOC dropout prediction. Computers & Electrical Engineering, 94(4), 107315. https://doi.org/10.1016/j.compeleceng.2021.107315
Ghada, Refaat, El, & Said. (2016). Understanding how learners use massive open online courses and why they drop out. Journal of Educational Computing Research, 55(5), 724-752. https://doi.org/10.1177/0735633116681302
Gubbels, J., van der Put, C.E. & Assink, M. (2019). Risk factors for school absenteeism and dropout: A meta-analytic review. Journal of Youth and Adolescence. 48(1), 1637–1667. https://doi.org/10.1007/s10964-019-01072-5
Gupta, A., Garg, D., & Kumar, P. (2022). Mining sequential learning trajectories with hidden markov models for early prediction of at-risk students in e-learning environments. IEEE Transactions on Learning Technologies., 15(6), 783–797. https://doi.org/10.1109/TLT.2022.3197486
Hsu, L. (2022). EFL learners’ self-determination and acceptance of LMOOCs: The UTAUT model. Computer Assisted Language Learning. https://doi.org/10.1080/09588221.2021.1976210
Khoushehgir, F., & Sulaimany, S. (2023). Negative link prediction to reduce dropout in Massive Open Online Courses. Education and Information Technologies., 2023(1), 1–20. https://doi.org/10.1007/s10639-023-11597-9
Kim, T. D., Yang, M. Y., Bae, J., Min, B. A., Lee, I., & Kim, J. (2017). Escape from infinite freedom: effects of constraining user freedom on the prevention of dropout in an online learning context. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2016.09.019
Mourdi, Y., Sadgal, M., Elalaoui Elabdallaoui, H., El Kabtane, H., & Allioui, H.(2022). A recurrent neural networks based framework for at-risk learners' early prediction and MOOC tutor's decision support. Computer Applications in Engineering Education. 2022(11), 1061-3773. https://doi.org/10.1002/cae.22582
Mubarak, A. A., Han, C., & Hezam, I. M. (2021). Deep analytic model for student dropout prediction in massive open online courses. Computers & Electrical Engineering, 93(1), 107271. https://doi.org/10.1016/j.compeleceng.2021.107271
Rodríguez, P., Villanueva, A., Dombrovskaia, L., & Valenzuela, J. (2023). A methodology to design, develop, and evaluate machine learning models for predicting dropout in school systems: the case of Chile. Education and Information Technologies., 2023(1), 1–47. https://doi.org/10.1007/s10639-022-11515-5
Xia, X. (2020a). Random field design and collaborative inference strategies for learning interaction activities. Interactive Learning Environments., 2020(12), 1–25. https://doi.org/10.1080/10494820.2020.1863236
Xia, X. (2020b). Learning behavior mining and decision recommendation based on association rules in interactive learning environment. Interactive Learning Environments. https://doi.org/10.1080/10494820.2020.1799028
Xia, X. (2021a). Sparse learning strategy and key feature selection in interactive learning environment. Interactive Learning Environments., 2021(11), 1–25. https://doi.org/10.1080/10494820.2021.1998913
Xia, X. (2021b). Decision application mechanism of regression analysis of multi-category learning behaviors in interactive learning environment. Interactive Learning Environments., 2021(4), 1–14. https://doi.org/10.1080/10494820.2021.1916767
Xia, X. (2021c). Interaction recognition and intervention based on context feature fusion of learning behaviors in interactive learning environments. Interactive Learning Environments., 2021(1), 1–19. https://doi.org/10.1080/10494820.2021.1871632
Xia, X. (2022a). Application technology on collaborative training of interactive learning activities and trend preference diversion. SAGE Open, 12(2), 1–15. https://doi.org/10.1177/21582440221093368
Xia, X. (2022b). Diversion inference model of learning effectiveness supported by differential evolution strategy. Computers and Education: Artificial Intelligence., 3(1), 100071. https://doi.org/10.1016/j.caeai.2022.100071
Xia, X., & Qi, W. (2022a). Early warning mechanism of interactive learning process based on temporal memory enhancement model. Education and Information Technologies., 2022(7), 1–22. https://doi.org/10.1007/s10639-022-11206-1
Xia, X., & Qi, W. (2022b). Temporal tracking and early warning of multi semantic features of learning behavior. Computers and Education: Artificial Intelligence., 3(1), 100045. https://doi.org/10.1016/j.caeai.2021.100045
Xia, X., & Qi, W. (2023). learning behavior interest propagation strategy of MOOCs based on multi entity knowledge graph. Education and Information Technologies., 2023(3), 1–29. https://doi.org/10.1007/s10639-023-11719-3