Down-regulation of miR-23a inhibits high glucose-induced EMT and renal fibrogenesis by up-regulation of SnoN

Springer Science and Business Media LLC - Tập 31 - Trang 22-32 - 2017
Haiping Xu1, Fuyun Sun1, Xiuli Li1, Lina Sun1
1Urology Department, Cangzhou Central Hospital, Hebei, People’s Republic of China

Tóm tắt

It has been reported that transforming growth factor-β1 (TGF-β1) signaling plays an important role in the development of diabetic nephropathy (DN). The nuclear transcription co-repressor Ski-related novel protein N (SnoN) is a critical negative regulator of TGF-β1/Smad signal pathway, involving in tubule epithelial–mesenchymal transition (EMT), extracellular matrix (ECM) accumulation, and tubulointerstitial fibrosis. In this study, we focused on miR-23a as a regulator of SnoN. Our purpose is to study the effects of miR-23a on high glucose (HG)-induced EMT process and ECM deposition in HK2 cells. We found that miR-23a was up-regulated in renal tissues of diabetic patients and HG-induced HK2 cells. Besides, the high level of miR-23a was closely associated with decreased SnoN expression. Knockdown of miR-23a increased SnoN expression and in turn suppressed HG-induced EMT and renal fibrogenesis. Introduction of miR-23a decreased SnoN expression and enhanced the profibrogenic effects of HG on HK2 cells. Next, bioinformatics analysis predicted that the SnoN was a potential target gene of miR-23a. Luciferase reporter assay demonstrated that miR-23a could directly target SnoN. We demonstrated that overexpression of SnoN was sufficient to inhibit HG-induced EMT and renal fibrogenesis in HK2 cells. Furthermore, down-regulation of SnoN partially reversed the protective effect of miR-23a knockdown on HG-induced EMT and renal fibrogenesis in HK2 cells. Collectively, miR-23a and SnoN significantly impact on the progression of HG-induced EMT and renal fibrogenesis in vitro, and they may represent novel targets for the prevention strategies of renal fibrosis in the context of DN.

Tài liệu tham khảo

Herbach N. Pathogenesis of diabetes mellitus and diabetic complications. Studies on diabetic mouse models. Der Pathol. 2012;2012(Suppl 2):318–24.

Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol. 2006;17(9):2484–94.

Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15(1):1–12.

Tian K, Di R, Wang L. MicroRNA-23a enhances migration and invasion through PTEN in osteosarcoma. Cancer Gene Ther. 2015;22(7):351–9.

Arai H. Diabetes mellitus related common medical disorders: recent progress in diagnosis and treatment topics: I. Pathophysiology, diagnosis and treatment: 9. Dyslipidemia. Nihon Naika Gakkai Zasshi. 2013;102(4):890–4.