Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tăng gấp đôi tỷ lệ sống sót và cải thiện kết quả lâm sàng bằng cách sử dụng thiết bị hỗ trợ thất trái thay vì thực hiện ép ngực trong hồi sức sau khi ngừng tim kéo dài: một nghiên cứu trên động vật lớn
Tóm tắt
Dù đã có những cải tiến trong chăm sóc tích cực trước khi nhập viện và sau các vụ ngừng tim, ngừng tim bất ngờ (CA) vẫn là một trong những nguyên nhân hàng đầu gây tử vong. Việc cải thiện tuần hoàn trong hồi sức tim phổi (CPR) có thể làm tăng tỷ lệ sống sót và cải thiện kết quả lâm sàng lâu dài sau CA. Trong một mô hình lợn, chúng tôi đã so sánh CPR tiêu chuẩn (sCPR; n = 10) với CPR sử dụng thiết bị hỗ trợ tim trong mạch mà không cần ép ngực thêm (iCPR; n = 10) sau 10 phút bị rung thất do điện (VF). Trong một thí nghiệm chéo riêng biệt, thêm 10 con lợn khác đã trải qua 10 phút VF và 6 phút sCPR; thiết bị iCPR sau đó được cấy ghép nếu không đạt được tuần hoàn tự phát trở lại (ROSC) bằng cách sử dụng sCPR. Các động vật được đánh giá theo động học huyết học trong và sau CA, tình trạng sống sót, kết quả chức năng và tổn thương não cũng như cơ tim sau CPR. Chúng tôi giả thuyết rằng iCPR sẽ dẫn đến tỷ lệ ROSC cao hơn và phục hồi chức năng tốt hơn so với sCPR. iCPR tạo ra lưu lượng trung bình 1.36 ± 0.02 L/phút, dẫn đến giá trị áp lực tưới máu vành (CPP) cao hơn đáng kể trong giai đoạn đầu của CPR (22 ± 10 mmHg so với 9 ± 5 mmHg, P ≤0.01, 1 phút sau khi bắt đầu CPR; 20 ± 11 mmHg so với 10 ± 7 mmHg, P =0.03, 2 phút sau khi bắt đầu CPR), dẫn đến tỷ lệ ROSC cao (100% ở iCPR so với 50% ở động vật sCPR; P =0.03). Những con vật ở nhóm iCPR cho thấy nồng độ S100 huyết thanh thấp hơn đáng kể ở 10 và 30 phút sau khi ROSC (3.5 ± 0.6 ng/ml so với 7.4 ± 3.0 ng/ml 30 phút sau khi ROSC; P ≤0.01), cũng như kết quả lâm sàng tốt hơn dựa trên các thể loại hiệu suất tổng thể (2.9 ± 1.0 so với 4.6 ± 0.8 vào ngày thứ nhất; P ≤0.01). Trong các thí nghiệm chéo, 80% động vật cần điều trị bằng iCPR sau khi thất bại với sCPR. Đáng chú ý, ROSC vẫn đạt được ở sáu trong số tám động vật còn lại (75%) sau tổng cộng 22.8 ± 5.1 phút bị thiếu máu. Trong một mô hình ngừng tim kéo dài, việc sử dụng iCPR thay vì sCPR đã cải thiện CPP và gấp đôi tỷ lệ ROSC, dẫn đến cải thiện kết quả lâm sàng.
Từ khóa
#ngừng tim #hồi sức tim phổi #thiết bị hỗ trợ tim trong mạch #tuần hoàn tự phát trở lại #sinh thiết timTài liệu tham khảo
Gratrix AP, Pittard AJ, Bodenham AR. Outcome after admission to ITU following out-of-hospital cardiac arrest: are non-survivors suitable for non-heart-beating organ donation? Anaesthesia. 2007;62:434–7.
Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118:2452–83.
Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–87.
Wang HE, Devlin SM, Sears GK, Vaillancourt C, Morrison LJ, et al. Regional variations in early and late survival after out-of-hospital cardiac arrest. Resuscitation. 2012;83:1343–8.
Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R, et al. Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S640–56.
Andreka P, Frenneaux MP. Haemodynamics of cardiac arrest and resuscitation. Curr Opin Crit Care. 2006;12:198–203.
Wik L, Kramer-Johansen J, Myklebust H, Sørebø H, Svensson L, Fellows B, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA. 2005;293:299–304.
Hallstrom A, Rea TD, Sayre MR, Christenson J, Anton AR, Mosesso Jr VN, et al. Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA. 2006;295:2620–8.
Rubertsson S, Lindgren E, Smekal D, Östlund O, Silfverstolpe J, Lichtveld RA, et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. 2014;311:53–61.
Wik L, Olsen JA, Persse D, Sterz F, Lozano Jr M, Brouwer MA, et al. Comparison of survival to hospital discharge between integrated AutoPulse-CPR and manual-CPR during out-of-hospital cardiac arrest of presumed cardiac origin: The Circulation Improving Resuscitation Care (CIRC) Trial [abstract 291. Circulation. 2011;124:2374.
Peura JL, Colvin-Adams M, Francis GS, Grady KL, Hoffman TM, Jessup M, et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation. 2012;126:2648–67.
Landé AJ. Prolonged perfusion in cardiac and respiratory emergencies. Langenbecks Arch Chir. 1972;332:291–6. German.
Bednarczyk JM, White CW, Ducas RA, Golian M, Nepomuceno R, Hiebert B, et al. Resuscitative extracorporeal membrane oxygenation for in hospital cardiac arrest: a Canadian observational experience. Resuscitation. 2014;85:1713–9.
Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–61.
Kar B, Gregoric ID, Basra SS, Idelchik GM, Loyalka P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57:688–96.
Tuseth V, Pettersen RJ, Grong K, Wentzel-Larsen T, Haaverstad R, Fanneløp T, et al. Randomised comparison of percutaneous left ventricular assist device with open-chest cardiac massage and with surgical assist device during ischaemic cardiac arrest. Resuscitation. 2010;81:1566–70.
Fries M, Nolte K, Demir F, Kottmann K, Timper A, Coburn M, et al. Neurocognitive performance after cardiopulmonary resuscitation in pigs. Crit Care Med. 2008;36:842–7.
Fries M, Brücken A, Çizen A, Westerkamp M, Löwer C, Deike-Glindemann J, et al. Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med. 2012;40:1297–303.
Ristagno G, Fries M, Brunelli L, Fumagalli F, Bagnati R, Russo I, et al. Early kynurenine pathway activation following cardiac arrest in rats, pigs, and humans. Resuscitation. 2013;84:1604–10.
Derwall M, Westerkamp M, Löwer C, Deike-Glindemann J, Schnorrenberger NK, Coburn M, et al. Hydrogen sulfide does not increase resuscitability in a porcine model of prolonged cardiac arrest. Shock. 2010;34:190–5.
Niemann JT, Rosborough JP, Ung S, Criley JM. Coronary perfusion pressure during experimental cardiopulmonary resuscitation. Ann Emerg Med. 1982;11:127–31.
Carveth S. Standards for cardiopulmonary resuscitation and emergency cardiac care. JAMA. 1974;227:796–7.
Committee ECC. Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2005;112(24 Suppl):IV1–203.
Redberg RF, Tucker KJ, Cohen TJ, Dutton JP, Callaham ML, Schiller NB. Physiology of blood flow during cardiopulmonary resuscitation: a transesophageal echocardiographic study. Circulation. 1993;88:534–42.
Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, O’Hearn N, et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA. 2005;293:305–10.
Heidenreich JW, Berg RA, Higdon TA, Ewy GA, Kern KB, Sanders AB. Rescuer fatigue: standard versus continuous chest-compression cardiopulmonary resuscitation. Acad Emerg Med. 2006;13:1020–6.
Remmelink M, Sjauw KD, Henriques JP, de Winter RJ, Koch KT, van der Schaaf RJ, et al. Effects of left ventricular unloading by Impella recover LP2.5 on coronary hemodynamics. Catheter Cardiovasc Interv. 2007;70:532–7.
Kapur NK, Paruchuri V, Urbano-Morales JA, Mackey EE, Daly GH, Qiao X, et al. Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size. Circulation. 2013;128:328–36.
Trummer G, Foerster K, Buckberg GD, Benk C, Heilmann C, Mader I, et al. Successful resuscitation after prolonged periods of cardiac arrest: a new field in cardiac surgery. J Thorac Cardiovasc Surg. 2010;139:1325-32.e2.
Arlt M, Philipp A, Voelkel S, Camboni D, Rupprecht L, Graf BM, et al. Hand-held minimised extracorporeal membrane oxygenation: a new bridge to recovery in patients with out-of-centre cardiogenic shock. Eur J Cardiothorac Surg. 2011;40:689–94.
Lamhaut L, Jouffroy R, Soldan M, Phillipe P, Deluze T, Jaffry M, et al. Safety and feasibility of prehospital extra corporeal life support implementation by non-surgeons for out-of-hospital refractory cardiac arrest. Resuscitation. 2013;84:1525–9.
Le Guen M, Nicolas-Robin A, Carreira S, Raux M, Leprince P, Riou B, et al. Extracorporeal life support following out-of-hospital refractory cardiac arrest. Crit Care. 2011;15:R29.
Zangrillo A, Landoni G, Biondi-Zoccai G, Greco M, Greco T, Frati G, et al. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit Care Resusc. 2013;15:172–8.
Wong JK, Smith TN, Pitcher HT, Hirose H, Cavarocchi NC. Cerebral and lower limb near-infrared spectroscopy in adults on extracorporeal membrane oxygenation. Artif Organs. 2012;36:659–67.
Gibbons Kroeker CA, Adeeb S, Shrive NG, Tyberg JV. Compression induced by RV pressure overload decreases regional coronary blood flow in anesthetized dogs. Am J Physiol Heart Circ Physiol. 2006;290:H2432–8.
Seyfarth M, Sibbing D, Bauer I, Fröhlich G, Bott-Flügel L, Byrne R, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52:1584–8.
Mukku VK, Cai Q, Gilani S, Fujise K, Barbagelata A. Use of impella ventricular assist device in patients with severe coronary artery disease presenting with cardiac arrest. Int J Angiol. 2012;21:163–6.
Tuseth V, Pettersen RJ, Epstein A, Grong K, Husby P, Farstad M, et al. Percutaneous left ventricular assist device can prevent acute cerebral ischaemia during ventricular fibrillation. Resuscitation. 2009;80:1197–203.
Tuseth V, Salem M, Pettersen R, Grong K, Rotevatn S, Wentzel-Larsen T, et al. Percutaneous left ventricular assist in ischemic cardiac arrest. Crit Care Med. 2009;37:1365–72.
Chandra NC, Tsitlik JE, Halperin HR, Guerci AD, Weisfeldt ML. Observations of hemodynamics during human cardiopulmonary resuscitation. Crit Care Med. 1990;18:929–34.
Ornato JP, Ryschon TW, Gonzalez ER, Bredthauer JL. Rapid change in pulmonary vascular hemodynamics with pulmonary edema during cardiopulmonary resuscitation. Am J Emerg Med. 1985;3:137–42.
Fattouch K, Sbraga F, Bianco G, Speziale G, Gucciardo M, Sampognaro R, et al. Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J Card Surg. 2005;20:171–6.
Hammer M, Jovin T, Wahr JA, Heiss WD. Partial occlusion of the descending aorta increases cerebral blood flow in a nonstroke porcine model. Cerebrovasc Dis. 2009;28:406–10.
Atkins DL. Doing the same thing over and over, yet expecting different results. Circulation. 2013;128:2465–7.
Reynolds JC, Frisch A, Rittenberger JC, Callaway CW. Duration of resuscitation efforts and functional outcome after out-of-hospital cardiac arrest: when should we change to novel therapies? Circulation. 2013;128:2488–94.
Hilty WM, Hudson PA, Levitt MA, Hall JB. Real-time ultrasound-guided femoral vein catheterization during cardiopulmonary resuscitation. Ann Emerg Med. 1997;29:331–7.
Manning JE. Feasibility of blind aortic catheter placement in the prehospital environment to guide resuscitation in cardiac arrest. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S173–7.
Volpicelli G. Usefulness of emergency ultrasound in nontraumatic cardiac arrest. Am J Emerg Med. 2011;29:216–23.
Manzo-Silberman S, Fichet J, Mathonnet A, Varenne O, Ricome S, Chaib A, et al. Percutaneous left ventricular assistance in post cardiac arrest shock: comparison of intra aortic blood pump and IMPELLA Recover LP2.5. Resuscitation. 2013;84:609–15.
Pawale A, Pinney S, Ashley K, Flynn R, Milla F, Anyanwu AC. Implantable left ventricular assist devices as initial therapy for refractory postmyocardial infarction cardiogenic shock. Eur J Cardiothorac Surg. 2013;44:213–6.