Double-slit photoelectron interference in strong-field ionization of the neon dimer

Nature Communications - Tập 10 Số 1
Maksim Kunitski1, Nicolas Eicke2, P. Huber1, Jonas Köhler1, S. Zeller1, J. Voigtsberger1, Nikolai Schlott1, K. Henrichs1, H. Sann1, Florian Trinter1, Lothar Schmidt1, Anton Kalinin3, M. S. Schöffler1, T. Jahnke1, Manfred Lein2, R. Dörner1
1Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 1, 60438, Frankfurt am Main, Germany
2Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
3GSI-Helmholtz Center for Heavy Ion Research, Planckstraße 1, 64291, Darmstadt, Germany

Tóm tắt

AbstractWave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

Từ khóa


Tài liệu tham khảo

Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman lectures on physics. 3: Quantum mechanics (Addison-Wesley Publishing Co., Inc., Reading, Mass, London, 1965).

Cohen, H. D. & Fano, U. Interference in the Photo-Ionization of Molecules. Phys. Rev. 150, 30–33 (1966).

Akoury, D. et al. The simplest double slit: interference and entanglement in double photoionization of H2. Science 318, 949–952 (2007).

Schöffler, M. S. et al. Photo-double-ionization of H2: Two-center interference and its dependence on the internuclear distance. Phys. Rev. A 78, 013414 (2008).

Canton, S. E. et al. Direct observation of Young’s double-slit interferences in vibrationally resolved photoionization of diatomic molecules. Proc. Natl Acad. Sci. USA 108, 7302–7306 (2011).

Waitz, M. et al. Two-particle interference of electron pairs on a molecular level. Phys. Rev. Lett. 117, 083002 (2016).

Rolles, D. et al. Isotope-induced partial localization of core electrons in the homonuclear molecule N2. Nature 437, 711–715 (2005).

Liu, X.-J. et al. Young’s double-slit experiment using core-level photoemission from N 2: revisiting Cohen–Fano’s two-centre interference phenomenon. J. Phys. B At. Mol. Opt. Phys. 39, 4801 (2006).

Schöffler, M. S. et al. Ultrafast probing of core hole localization in N2. Science 320, 920–923 (2008).

Zimmermann, B. et al. Localization and loss of coherence in molecular double-slit experiments. Nat. Phys. 4, 649–655 (2008).

Liu, X.-J. et al. Einstein–Bohr recoiling double-slit gedanken experiment performed at the molecular level. Nat. Photon 9, 120–125 (2015).

Sann, H. et al. Delocalization of a Vacancy across Two Neon Atoms Bound by the van der Waals Force. Phys. Rev. Lett. 117, 263001 (2016).

Kushawaha, R. K. et al. From double-slit interference to structural information in simple hydrocarbons. Proc. Natl Acad. Sci. USA 110, 15201–15206 (2013).

Henkel, J., Lein, M. & Engel, V. Interference in above-threshold-ionization electron distributions from molecules. Phys. Rev. A 83, 051401 (2011).

Lai, X., Faria, C. F. & de, M. Temporal and spatial interference in molecular above-threshold ionization with elliptically polarized fields. Phys. Rev. A 88, 013406 (2013).

Hu, S., Chen, J., Hao, X. & Li, W. Effect of low-energy electron interference on strong-field molecular ionization. Phys. Rev. A 93, 023424 (2016).

Muth-Böhm, J., Becker, A. & Faisal, F. H. M. Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields. Phys. Rev. Lett. 85, 2280–2283 (2000).

Zhang, C., Feng, T., Raabe, N. & Rottke, H. Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of driving ionic transitions. Phys. Rev. A 97, 023417 (2018).

Ansari, Z. et al. Interference in strong-field ionization of a two-centre atomic system. New J. Phys. 10, 093027 (2008).

Li, M. et al. Charge oscillation in multiphoton and tunneling ionization of rare-gas dimers. Phys. Rev. A 89, 025402 (2014).

Lein, M., Hay, N., Velotta, R., Marangos, J. P. & Knight, P. L. Interference effects in high-order harmonic generation with molecules. Phys. Rev. A 66, 023805 (2002).

Jaroń-Becker, A., Becker, A. & Faisal, F. H. M. Ionization of N2, O2, and linear carbon clusters in a strong laser pulse. Phys. Rev. A 69, 023410 (2004).

Lin, C. D. & Tong, X. M. Dependence of tunneling ionization and harmonic generation on the structure of molecules by short intense laser pulses. J. Photochem. Photobiol. A Chem. 182, 213–219 (2006).

Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

Lock, R. M., Zhou, X., Li, W., Murnane, M. M. & Kapteyn, H. C. Measuring the intensity and phase of high-order harmonic emission from aligned molecules. Chem. Phys. 366, 22–32 (2009).

Li, W. et al. Visualizing electron rearrangement in space and time during the transition from a molecule to atoms. Proc. Natl Acad. Sci. USA 107, 20219 (2010).

Son, S.-K., Telnov, D. A. & Chu, S.-I. Probing the origin of elliptical high-order harmonic generation from aligned molecules in linearly polarized laser fields. Phys. Rev. A 82, 043829 (2010).

Das, T., Augstein, B. B. & Figueira de Morisson Faria, C. High-order-harmonic generation from diatomic molecules in driving fields with nonvanishing ellipticity: a generalized interference condition. Phys. Rev. A 88, 023404 (2013).

Diveki, Z. et al. Molecular orbital tomography from multi-channel harmonic emission in N2. Attosecond Spectrosc. 414, 121–129 (2013).

Petersen, I., Henkel, J. & Lein, M. Signatures of molecular orbital structure in lateral electron momentum distributions from strong-field ionization. Phys. Rev. Lett. 114, 103004 (2015).

Yun, H., Yun, S. J., Lee, G. H. & Nam, C. H. High-harmonic spectroscopy of aligned molecules. J. Phys. B At. Mol. Opt. Phys. 50, 022001 (2017).

Su, N., Yu, S., Li, W., Yang, S. & Chen, Y. Probing the structure of multi-center molecules with odd–even high harmonics. Chin. Phys. B 27, 054213 (2018).

Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003).

Wu, J. et al. Steering the nuclear motion in singly ionized argon dimers with mutually detuned laser pulses. Phys. Rev. Lett. 110, 033005 (2013).

Popov, V. S. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Phys. -Uspekhi 47, 855 (2004).

Smeenk, C. et al. Precise in-situ measurement of laser pulse intensity using strong field ionization. Opt. Express 19, 9336–9344 (2011).

Schmidt, L. P. H. et al. Spatial imaging of the H2 + vibrational wave function at the quantum limit. Phys. Rev. Lett. 108, 073202 (2012).

Bandrauk, A. D. & Sink, M. L. Photodissociation in intense laser fields: Predissociation analogy. J. Chem. Phys. 74, 1110–1117 (1981).

Frasinski, L. J. et al. Manipulation of bond hardening in H2 + by chirping of intense femtosecond laser pulses. Phys. Rev. Lett. 83, 3625–3628 (1999).

Bucksbaum, P. H., Zavriyev, A., Muller, H. G. & Schumacher, D. W. Softening of the H2+ molecular bond in intense laser fields. Phys. Rev. Lett. 64, 1883–1886 (1990).

Wüest, A. & Merkt, F. Determination of the interaction potential of the ground electronic state of Ne2 by high-resolution vacuum ultraviolet laser spectroscopy. J. Chem. Phys. 118, 8807–8812 (2003).

Jagutzki, O. et al. Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477–2483 (2002).

Demekhin, P. V., Stoychev, S. D., Kuleff, A. I. & Cederbaum, L. S. Exploring interatomic coulombic decay by free electron lasers. Phys. Rev. Lett. 107, 273002 (2011).

Lein, M., Gross, E. K. U. & Engel, V. Intense-field double ionization of helium: identifying the mechanism. Phys. Rev. Lett. 85, 4707–4710 (2000).

Tong, X.-M. & Lin, C. D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B At. Mol. Opt. Phys. 38, 2593 (2005).

Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).