Dose escalation of a curcuminoid formulation

Christopher D. Lao1, Mack T. Ruffin2, Daniel P. Normolle3, Dennis D. Heath4, Sandra I. Murray1, Joanne Bailey1, Martha E. Boggs1, James A. Crowell5, Cheryl L. Rock6, Dean E. Brenner1
1Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
2Department of Family Medicine, University of Michigan, Ann Arbor
3Biostatistics Core, Cancer Center, University of Michigan, Ann Arbor, USA
4Cancer Prevention and Control Program, University of California, La Jolla, USA
5Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Bethesda, USA
6Department of Family and Preventive Medicine, University of California, La Jolla, USA

Tóm tắt

Abstract Background Curcumin is the major yellow pigment extracted from turmeric, a commonly-used spice in India and Southeast Asia that has broad anticarcinogenic and cancer chemopreventive potential. However, few systematic studies of curcumin's pharmacology and toxicology in humans have been performed. Methods A dose escalation study was conducted to determine the maximum tolerated dose and safety of a single dose of standardized powder extract, uniformly milled curcumin (C 3 Complex™, Sabinsa Corporation). Healthy volunteers were administered escalating doses from 500 to 12,000 mg. Results Seven of twenty-four subjects (30%) experienced only minimal toxicity that did not appear to be dose-related. No curcumin was detected in the serum of subjects administered 500, 1,000, 2,000, 4,000, 6,000 or 8,000 mg. Low levels of curcumin were detected in two subjects administered 10,000 or 12,000 mg. Conclusion The tolerance of curcumin in high single oral doses appears to be excellent. Given that achieving systemic bioavailability of curcumin or its metabolites may not be essential for colorectal cancer chemoprevention, these findings warrant further investigation for its utility as a long-term chemopreventive agent.

Từ khóa


Tài liệu tham khảo

Mukhopadhyay A, Basu N, Ghatak N, Gujral PK: Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions. 1982, 12 (4): 508-515. 10.1007/BF01965935.

Srimal RC, Dhawan BN: Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol. 1973, 25 (6): 447-452.

Rao CV, Rivenson A, Simi B, Reddy BS: Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res. 1995, 55 (2): 259-266.

Huang MT, Smart RC, Wong CQ, Conney AH: Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988, 48 (21): 5941-5946.

Huang MT, Lou YR, Ma W, Newmark HL, Reuhl KR, Conney AH: Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res. 1994, 54 (22): 5841-5847.

Aggarwal BB, Kumar A, Bharti AC: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, 23 (1A): 363-398.

Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21 (4B): 2895-2900.

Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP: Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res. 2001, 7 (7): 1894-1900.

Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64 (4): 353-356.

National Cancer Istitute, Common Toxicity Criteria version 2.0. [http://ctep.cancer.gov/reporting/CTC-3test.html]

Heath DD, Pruitt MA, Brenner DE, Rock CL: Curcumin in plasma and urine: quantitation by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2003, 783 (1): 287-295.

Clinical development plan: curcumin. J Cell Biochem Suppl. 1996, 26: 72-85.

National Toxicology Program, Report TR 427, Turmeric Oleoresin. 1992

Soni KB, Kuttan R: Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol. 1992, 36 (4): 273-275.

Satoskar RR, Shah SJ, Shenoy SG: Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol. 1986, 24 (12): 651-654.

Deodhar SD, Sethi R, Srimal RC: Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res. 1980, 71: 632-634.

Holder GM, Plummer JL, Ryan AJ: The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica. 1978, 8 (12): 761-768.

Wahlstrom B, Blennow G: A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). 1978, 43 (2): 86-92.

Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, Farmer PB, Steward WP, Gescher AJ: Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev. 2002, 11 (1): 105-111.

Ravindranath V, Chandrasekhara N: Metabolism of curcumin--studies with [3H]curcumin. Toxicology. 1981, 22 (4): 337-344. 10.1016/0300-483X(81)90027-5.

Ravindranath V, Chandrasekhara N: Absorption and tissue distribution of curcumin in rats. Toxicology. 1980, 16 (3): 259-265. 10.1016/0300-483X(80)90122-5.

Ravindranath V, Chandrasekhara N: In vitro studies on the intestinal absorption of curcumin in rats. Toxicology. 1981, 20 (2-3): 251-257. 10.1016/0300-483X(81)90056-1.

Pan MH, Huang TM, Lin JK: Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999, 27 (4): 486-494.

Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S, Jukes R, Williams M, Steward WP, Gescher A: Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001, 61 (3): 1058-1064.