Domains of Holomorphy of Generating Functions of Pólya Frequency Sequences of Finite Order*
Tóm tắt
A domain
$$G \subset \bar {\mathbb{C}}$$
is the domain of holomorphy of the generating function of a Pólya frequency sequence of order r if and only if it satisfies the following conditions: (A) G contains the point z = 0, (B) G is symmetric with respect to the real axis, (C) T = dist(0,∂G)ε∂G.
Tài liệu tham khảo
Aissen, M., Edrei, A., Schoenberg, I.J. and Whitney, A.: On the generating functions of totally positive sequences, Journal d'Analyse Math. 2 (1953), 93–109.
Alzugaray, M.T.: Growth of functions analytic in the unit disk which are generating functions of Pólya frequency sequences, Matematichni Studii 4 (1995), 13–18.
Alzugaray, M.T.: On singularities of generating functions of Pólya frequency sequences of finite order, Positivity 5 (2001), 13–23.
Fekete, M. and Pólya G.: Über ein problem von Laguerre, Rend. Circ. Mat. Palermo 34 (1912), 89–120.
Karlin, S.: Total Positivity, Vol. I, Stanford University Press, California, 1968.
Katkova, O.M.: On Indicators of Entire Functions of Finite Order with Multiply Positive Sequences of Coefficients (Russian), Dep. VINITI 22.02.89, No. 1179-B89.
Katkova, O.M. and Ostrovskii, I.V.: Zero sets of entire generating functions of Pólya frequency sequences of finite order, Math. USSR-Izvestiya 35 (1990), 101–112.
Levin, B.Ya. Raspredelenye nuley tselykh funktsiy (Russian), Gosudarstvennoye Izdatiel'stvo Tekhniko-Teoreticheskoy Literatury, Moskva, 1956. English translation: Distribution of Zeros of Entire Functions, Transl. Math. Monographs, vol.5, AMS, Providence, RI, 1980.
Schoenberg, I.J.: On the zeros of the generating functions of multiply positive sequences and functions, Annals of Math. 62 (1955), 447–471.