Does the prenatal bisphenol A exposure alter DNA methylation levels in the mouse hippocampus?: An analysis using a high-sensitivity methylome technique

Genes and Environment - Tập 40 - Trang 1-8 - 2018
Toshiki Aiba1,2, Toshiyuki Saito2, Akiko Hayashi2, Shinji Sato3, Harunobu Yunokawa3, Toru Maruyama4, Wataru Fujibuchi4, Seiichiroh Ohsako1
1Laboratory of Environmental Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
2Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
3Maze, Inc, Tokyo, Japan
4Center for iPS cell Research and Application, Kyoto University, Kyoto, Japan

Tóm tắt

There is still considerable debate about the effects of exposure to bisphenol A (BPA) an endocrine disrupter at low doses. Recently, many studies using animal models have shown that prenatal BPA exposure induces behavioral and neuronal disorders due to epigenetic changes in the brain. However, striking evidence of epigenomic changes has to be shown. To investigate whether low-dose BPA exposure in the fetal stage can alter CpG methylation levels in the central nervous system, the hippocampus of the inbred C57BL/6 J mouse as the target tissue was collected to detect alterations in CpG methylation levels using a highly sensitive method of genome-wide DNA methylation analysis, methylated site display–amplified fragment length polymorphism (MSD-AFLP). BPA showed the sex-hormone like effects on male reproductive organs. Although we examined the methylation levels of 43,840 CpG sites in the control and BPA (200 μg/kg/day)-treated group (6 mice per group), we found no statistically significant changes in methylation levels in any CpG sites. At least under the experimental condition in this study, it is considered that the effect of low-dose BPA exposure during the fetal stage on hippocampal DNA methylation levels is extremely small.

Tài liệu tham khảo

Leonardi A, Cofini M, Rigante D, Lucchetti L, Cipolla C, Penta L, et al. The effect of bisphenol a on puberty: a critical review of the medical literature. Int J Environ Res Public Health [Internet]. 2017;14:1044. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28891963 van der Meer TP, Artacho-Cordón F, Swaab DF, Struik D, Makris KC, Wolffenbuttel BHR, et al. Distribution of non-persistent endocrine disruptors in two different regions of the human brain. Int. J. Environ. Res. Public Health [Internet]. 2017;14:1059. Available from: http://www.mdpi.com/1660-4601/14/9/1059 Arase S, Ishii K, Igarashi K, Aisaki K, Yoshio Y, Matsushima A, et al. Endocrine disrupter bisphenol a increases in situ estrogen production in the mouse urogenital sinus. Biol Reprod [Internet]. 2011;84:734–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21123812 Liu X, Matsushima A, Shimohigashi M, Shimohigashi Y. A characteristic back support structure in the bisphenol A-binding pocket in the human nuclear receptor ERRγ. Vanacker J-M, editor. PLoS One [Internet]. 2014;9:e101252. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24978476 Sartain CV, Hunt PA. An old culprit but a new story: bisphenol a and “NextGen” bisphenols. Fertil Steril [Internet]. 2016;106:820–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27504789 Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D. Bisphenol-a: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology [Internet]. 1993;132:2279–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8504731 Nagel SC, vom Saal FS, Thayer KA, Dhar MG, Boechler M, Welshons WV. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol a and octylphenol. Environ Health Perspect [Internet]. 1997;105:70–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9074884 vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, et al. A physiologically based approach to the study of bisphenol a and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health [Internet]. 1998;14:239–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9460178 Sakaue M, Ohsako S, Ishimura R, Kurosawa S, Kurohmaru M, Hayashi Y, et al. Bisphenol-a affects spermatogenesis in the adult rat even at a low dose. J Occup Health [Internet]. 2001;43:185–90. Available from: http://joi.jlc.jst.go.jp/JST.Journalarchive/joh1996/43.185?from=CrossRef Shelby MD. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol a. NTP CERHR MON [Internet]. 2008;v, vii–ix:1–64 passim. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19407859 Ashby J, Tinwell H, Haseman J. Lack of effects for low dose levels of bisphenol a and diethylstilbestrol on the prostate gland of CF1 mice exposed in utero. Regul Toxicol Pharmacol [Internet]. 1999;30:156–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10536110 Ashby J, Tinwell H, Lefevre PA, Joiner R, Haseman J. The effect on sperm production in adult Sprague-Dawley rats exposed by gavage to bisphenol a between postnatal days 91-97. Toxicol Sci [Internet]. 2003;74:129–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12773777 Cagen SZ, Waechter JMJ, Dimond SS, Breslin WJ, Butala JH, Jekat FW, et al. Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol a. Toxicol Sci [Internet]. 1999;50:36–44. Available from: 10445751 Ema M, Fujii S, Furukawa M, Kiguchi M, Ikka T, Harazono A. Rat two-generation reproductive toxicity study of bisphenol a. Reprod Toxicol [Internet]. 2001;15:505–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11780958 Tyl RW, Myers CB, Marr MC, Thomas BF, Keimowitz AR, Brine DR, et al. Three-generation reproductive toxicity study of dietary bisphenol a in CD Sprague-Dawley rats. Toxicol. Sci. [Internet]. 2002;68:121–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12075117 Fujimoto T, Kubo K, Aou S. Prenatal exposure to bisphenol a impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res [Internet]. 2006;1068:49–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16380096 Ishido M, Yonemoto J, Morita M. Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol Lett [Internet]. 2007;173:66–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17689037 Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol a. Endocrinology [Internet]. 2006;147:3681–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16675520 Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ. Bisphenol a prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2008;105:14187–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18768812 Miyagawa K, Narita M, Narita M, Akama H, Suzuki T. Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-a. Neurosci Lett [Internet]. 2007;418:236–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17467901 Kimura E, Matsuyoshi C, Miyazaki W, Benner S, Hosokawa M, Yokoyama K, et al. Prenatal exposure to bisphenol a impacts neuronal morphology in the hippocampal CA1 region in developing and aged mice. Arch Toxicol [Internet]. 2016;90:691–700. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25804199 Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, et al. Meeting report on the 3rd international congress on developmental origins of health and disease (DOHaD). Pediatr Res [Internet]. 2007;61:625–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17413866 Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science [Internet]. 2004;305:1733–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15375258 Sinclair KD, Lea RG, Rees WD, Young LE. The developmental origins of health and disease: current theories and epigenetic mechanisms. Soc Reprod Fertil Suppl [Internet]. 2007;64:425–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17491163 Poirier LA. The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: an introduction. J Nutr [Internet]. 2002;132:2336S–9S. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12163688 Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr [Internet]. 2007;27:363–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17465856 Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science [Internet]. 2005;308:1466–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15933200 Skinner MK. Endocrine disruptors in 2015: epigenetic transgenerational inheritance. Nat Rev Endocrinol. 2016;12(2):68. Nohara K, Suzuki T, Okamura K, Matsushita J, Takumi S. Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice. Genes Environ. [Internet]. 2017;39:3. Available from: http://genesenvironment.biomedcentral.com/articles/10.1186/s41021-016-0069-1 Ohsako S. Perinatal exposure to environmental chemicals induces Epigenomic changes in offspring. Genes Environ [Internet]. 2011;33:43–9. Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/jemsge/33.43?from=CrossRef Amenya HZ, Tohyama C, Ohsako S. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver. Sci Rep [Internet]. 2016;6:34989. Available from: http://www.nature.com/articles/srep34989 Kurita H, Aiba T, Saito T, Ohsako S. Detection of dioxin-induced demethylation of mouse Cyp1a1 gene promoter by a new labeling method for short DNA fragments possessing 5′-methylcytosine at the end. Genes Environ [Internet]. 2018;40:1. Available from: https://genesenvironment.biomedcentral.com/articles/10.1186/s41021-017-0089-5 Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2007;104:13056–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17670942 Dwyer SF, Gelman IH. Cross-phosphorylation and interaction between Src/FAK and MAPKAP5/PRAK in early focal adhesions controls cell motility. J cancer Biol Res [Internet]. 2014;2:55–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26042227 Ho S-M, Tang W-Y. Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol a increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res [Internet]. 2006;66:5624–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16740699 Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A [Internet]. 2015;112:6807–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25385582 Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol a. Biochem Biophys Res Commun [Internet]. 2008;376:563–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18804091 Singh S, Li SS-L. Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int J Mol Sci [Internet]. 2012;13:10143–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22949852 Aiba T, Saito T, Hayashi A, Sato S, Yunokawa H, Maruyama T, et al. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles. BMC Mol Biol [Internet]. 2017;18:7. http://www.ncbi.nlm.nih.gov/pubmed/28279161 Ichihara T, Yoshino H, Imai N, Tsutsumi T, Kawabe M, Tamano S, et al. Lack of carcinogenic risk in the prostate with Transplacental and Lactational exposure to bisphenol a in rats. J Toxicol Sci [Internet]. 2003;28:165–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12974608 Snyder RW, Maness SC, Gaido KW, Welsch F, Sumner SCJ, Fennell TR. Metabolism and disposition of bisphenol a in female rats. Toxicol Appl Pharmacol [Internet]. 2000;168:225–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11042095 Ashby J, Tinwell H, Odum J, Lefevre P. Natural variability and the influence of concurrent control values on the detection and interpretation of low-dose or weak endocrine toxicities. Environ. Health Perspect. [Internet]. 2004;112:847–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15175171 Savchuk I, Söder O, Svechnikov K. Mouse leydig cells with different androgen production potential are resistant to estrogenic stimuli but responsive to bisphenol a which attenuates testosterone metabolism. Bhattacharya S, editor. PLoS One [Internet]. 2013;8:e71722. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23967237 Zhang Z, Li H, Manjanatha MG, Chen T, Mei N. Neonatal exposure of 17β- estradiol has no effects on mutagenicity of 7,12-dimethylbenz [a] anthracene in reproductive tissues of adult mice. Genes Environ. [Internet]. 2015;37:16. Available from: http://www.genesenvironment.com/content/37/1/16