Does a 6-point scale approach to post-treatment 18F-FDG PET-CT allow to improve response assessment in head and neck squamous cell carcinoma? A multicenter study
Tóm tắt
Response assessment to definitive non-surgical treatment for head and neck squamous cell carcinoma (HNSCC) is centered on the role of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET-CT) 12 weeks after treatment. The 5-point Hopkins score is the only qualitative system available for standardized reporting, albeit limited by suboptimal positive predictive value (PPV). The aim of our study was to explore the feasibility and assess the diagnostic accuracy of an experimental 6-point scale (“Cuneo score”). We performed a retrospective, multicenter study on HNSCC patients who received a curatively-intended, radiation-based treatment. A centralized, independent qualitative evaluation of post-treatment FDG-PET/CT scans was undertaken by 3 experienced nuclear medicine physicians who were blinded to patients’ information, clinical data, and all other imaging examinations. Response to treatment was evaluated according to Hopkins, Cuneo, and Deauville criteria. The primary endpoint of the study was to evaluate the PPV of Cuneo score in assessing locoregional control (LRC). We also correlated semi-quantitative metabolic factors as included in PERCIST and EORTC criteria with disease outcome. Out of a total sample of 350 patients from 11 centers, 119 subjects (oropharynx, 57.1%; HPV negative, 73.1%) had baseline and post-treatment FDG-PET/CT scans fully compliant with EANM 1.0 guidelines and were therefore included in our analysis. At a median follow-up of 42 months (range 5-98), the median locoregional control was 35 months (95% CI, 32-43), with a 74.5% 3-year rate. Cuneo score had the highest diagnostic accuracy (76.5%), with a positive predictive value for primary tumor (Tref), nodal disease (Nref), and composite TNref of 42.9%, 100%, and 50%, respectively. A Cuneo score of 5-6 (indicative of residual disease) was associated with poor overall survival at multivariate analysis (HR 6.0; 95% CI, 1.88-19.18; p = 0.002). In addition, nodal progressive disease according to PERCIST criteria was associated with worse LRC (OR for LR failure, 5.65; 95% CI, 1.26-25.46; p = 0.024) and overall survival (OR for death, 4.81; 1.07-21.53; p = 0.04). In the frame of a strictly blinded methodology for response assessment, the feasibility of Cuneo score was preliminarily validated. Prospective investigations are warranted to further evaluate its reproducibility and diagnostic accuracy.
Tài liệu tham khảo
Barrington SF, Kluge R (2017 Aug) FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging. 44(Suppl 1):97–110. https://doi.org/10.1007/s00259-017-3690-8
Barrington SF, Phillips EH, Counsell N, Hancock B, Pettengell R, Johnson P et al (2019 Jul 10) Positron emission tomography score has greater prognostic significance than pretreatment risk stratification in early-stage Hodgkin lymphoma in the UK RAPID study. J Clin Oncol. 37(20):1732–1741. https://doi.org/10.1200/JCO.18.01799
Bathia A, Burtness B (2015 Oct 10) Human papillomavirus-associated oropharyngeal cancer: defining risk groups and clinical trials. J Clin Oncol. 33(29):3243–3250. https://doi.org/10.1200/JCO.2015.61.2358
Bhatnagar P, Subesinghe M, Patel C, Prestwich R, Scarsbrook AF (2013 Nov-Dec) Functional imaging for radiation treatment planning, response assessment, and adaptive therapy in head and neck cancer. Radiographics. 33(7):1909–1929. https://doi.org/10.1148/rg.337125163
Biggi A, Gallamini A, Chauvie S, Hutchings M, Kostakoglu L, Gregianin M et al (2013 May) International validation study for interim PET in ABVD-treated, advanced-stage hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med 54(5):683–690. https://doi.org/10.2967/jnumed.112.110890
Boellard R, O’Doherty MG, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG et al (2010 Jan) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37(1):181–200. https://doi.org/10.1007/s00259-009-1297-4
Carvalho AL, Nishimoto IN, Califano JA, Kowalski LP (2005 May 1) Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer 114(5):806–816. https://doi.org/10.1002/ijc.20740
Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383
Chauvie S, Bergesio F, Fioroni F, Brambilla M, Biggi A, Versari A et al (2016 May) The (68) Ge phantom-based FDG-PET site qualification program for clinical trials adopted by FIL (Italian Foundation on Lymphoma). Phys Med 32(5):651–656. https://doi.org/10.1016/j.ejmp.2016.04.004
Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3067
Gupta T, Master Z, Kannan S, Agarwal JP, Ghsoh-Laskar S, Rangarajan V et al (2011 Nov) Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 38(11):2083–2095. https://doi.org/10.1007/s00259-011-1893-y
Helsen N, Van Den Wyngaert T, Carp L, Stroobants S (2018 Jun) FDG-PET/CT for treatment response assessment in head and neck squamous cell carcinoma: a systematic review and meta-analysis of diagnostic performance. Eur J Nucl Med Mol Imaging. 45(6):1063–1071. https://doi.org/10.1007/s00259-018-3978-3
Huang SH, O’Sullivan B, Xu W, Zhao H, Chen DD, Ringash J et al (2013) Temporal nodal regression and regional control after primary radiation therapy for N2-N3 head-and-neck cancer stratified by HPV status. Int J Radiat Oncol Biol Phys 87(5):1078–1085. https://doi.org/10.1016/j.ijrobp.2013.08.049
Huang YC, Li SH, Lu HI, Hsu CC, Wang YM, Lin WC et al (2019 Jan 7) Post-chemoradiotherapy FDG PET with qualitative interpretation criteria for outcome stratification in esophageal squamous cell carcinoma. PloS One 14(1):e0210055. https://doi.org/10.1371/journal.pone.0210055
Iravani A, Turgeon GA, Akhurst T, Callahan JW, Bressel M, Everitt SJ et al (2019 Jun 12) PET-detected pneumonitis following curative-intent chemoradiation in non-small cell lung cancer (NSCLC): recognizing patterns and assessing the impact on the predictive ability of FDG-PET/CT response assessment. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-019-04388-3
Jentsch C, Beuthien-Baumann B, Troost EG, Shakirin G (2015) Validation of functional imaging as a biomarker for radiation treatment response. Br J Radiol. 88(1051):20150014. https://doi.org/10.1259/bjr.20150014
JH O, Lodge MA, Wahl R (2016 Aug) Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280(2):576–584. https://doi.org/10.1148/radiol.2016142043
Kendi AT, Brandon D, Switchenko J, Wadsworth JT, El-Deiry MW, Saba NF et al (2017 Sep 1) Head and neck PET/CT therapy response interpretation criteria (Hopkins criteria) – external validation study. Am J Nucl Med Mol Imaging 7(4):174–180
Kobe C, Goergen H, Baues C, Kuhnert G, Voltin CA, Zijlstra J et al (2018 Nov 22) Outcome-based interpretation of early interim PET in advanced-stage Hodgkin lymphoma. Blood 132(21):2273–2279. https://doi.org/10.1182/blood-2018-05-852129
Marcus C, Ciarallo A, Tahari AK, Mena E, Koch W, Wahl RL et al (2014) Head and neck PET/CT: therapy response interpretation criteria (Hopkins criteria)-interreader reliability, accuracy, and survival outcomes. J Nucl Med 55:1411–1416. https://doi.org/10.2967/jnumed.113.136796
Mehanna H, Wong WL, McConkey CC, Rahman JK, Robinson M, Hartley AG et al (2016) PET-CT surveillance versus neck dissection in advanced head and neck cancer. N Eng J Med 374(15):1444–1454. https://doi.org/10.1056/NEJMoa1514493
Morgan R, Chin BB, Lanning R (2019) Feasibility of rapid integrated radiation therapy planning with follow up FDG PET/CT to improveoverall treatment assessment in head and neck cancer. Am J Nucl Med Mol Imaging. 9(1):24–29
Pignon JP, Bourhis J, Domenge C, Désigné L, On behalf of the MACH-NC Collaborative Group (2000) Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. Lancet 255:949–955
Pignon JP, le Maître A, Maillard E, Bourhis J (2009) Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 92:4–14. https://doi.org/10.1016/j.radonc.2009.04.014
Rettig EM, D’Souza G (2015 Jul) Epidemiology of head and neck cancer. Surg Oncol Clin N Am. 24(3):379–396. https://doi.org/10.1016/j.soc.2015.03.001
Scarsbrook A, Vaidyanathan S, Chowdhury F, Swift S, Cooper R, Patel C (2017 Apr) Efficacy of qualitative response assessment interpretation criteria at 18F-FDG PET-CT for predicting outcome in locally advanced cervical carcinoma treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 44(4):581–588. https://doi.org/10.1007/s00259-016-3537-8
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al (2000 Feb 2) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 92(3):205–216
Van Den Wyngaert T, Helsen N, Carp L, Hakim S, Martens MJ, Hutsebaut I et al (2017 Oct 20) Fluorodeoxyglucose-positron emission tomography/computed tomography after concurrent chemoradiotherapy in locally advanced head-and-neck squamous cell cancer: the ECLYPS study. J Clin Oncol. 35(30):3458–3464. https://doi.org/10.1200/JCO.2017.73.5845
Wray R, Sheikhbahaei S, Marcus C, Zan E, Ferraro R, Rahmim A et al (2016) Therapy response assessment and patient outcomes in head and neck squamous cell carcinoma: FDG PET Hopkins criteria versus residual neck node size and morphologic features. AJR Am J Roentgenol 207(3):641–647. https://doi.org/10.2214/AJR.15.15730
Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA et al (1999 Dec) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35(13):1773–1782