Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex

International Journal of Molecular Sciences - Tập 20 Số 12 - Trang 2952
Therese Riedemann1
1Ludwig-Maximilians-University, Biomedical Center, Physiological Genomics, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany

Tóm tắt

Inhibitory interneurons make up around 10–20% of the total neuron population in the cerebral cortex. A hallmark of inhibitory interneurons is their remarkable diversity in terms of morphology, synaptic connectivity, electrophysiological and neurochemical properties. It is generally understood that there are three distinct and non-overlapping interneuron classes in the mouse neocortex, namely, parvalbumin-expressing, 5-HT3A receptor-expressing and somatostatin-expressing interneuron classes. Each class is, in turn, composed of a multitude of subclasses, resulting in a growing number of interneuron classes and subclasses. In this review, I will focus on the diversity of somatostatin-expressing interneurons (SOM+ INs) in the cerebral cortex and elucidate their function in cortical circuits. I will then discuss pathological consequences of a malfunctioning of SOM+ INs in neurological disorders such as major depressive disorder, and present future avenues in SOM research and brain pathologies.

Từ khóa


Tài liệu tham khảo

Feldmeyer, 2015, Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex, Cereb Cortex, 25, 788, 10.1093/cercor/bht278

DeFelipe, 2013, New insights into the classification and nomenclature of cortical GABAergic interneurons, Nat. Rev. Neurosci., 14, 202, 10.1038/nrn3444

Ascoli, 2008, Petilla terminology: Nomenclature of features of GABAergic interneurons of the cerebral cortex, Nat. Rev. Neurosci., 9, 557, 10.1038/nrn2402

Tomioka, 2005, Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex, Eur. J. Neurosci., 21, 1587, 10.1111/j.1460-9568.2005.03989.x

Lewis, 2005, Cortical inhibitory neurons and schizophrenia, Nat. Rev. Neurosci., 6, 312, 10.1038/nrn1648

Tripp, 2011, Reduced somatostatin in subgenual anterior cingulate cortex in major depression, Neurobiol. Dis., 42, 116, 10.1016/j.nbd.2011.01.014

Seney, 2015, Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression, Neurobiol. Dis., 73, 213, 10.1016/j.nbd.2014.10.005

Lewis, 2012, Cortical circuit dysfunction and cognitive deficits in schizophrenia--implications for preemptive interventions, Eur. J. Neurosci., 35, 1871, 10.1111/j.1460-9568.2012.08156.x

Somogyi, 2005, Defined types of cortical interneurone structure space and spike timing in the hippocampus, J. Physiol., 562, 9, 10.1113/jphysiol.2004.078915

Feldmeyer, 2018, Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex, Neuroscience, 368, 132, 10.1016/j.neuroscience.2017.05.027

Markram, 2015, Reconstruction and Simulation of Neocortical Microcircuitry, Cell, 163, 456, 10.1016/j.cell.2015.09.029

Riedemann, T., Straub, T., and Sutor, B. (2018). Two types of somatostatin-expressing GABAergic interneurons in the superficial layers of the mouse cingulate cortex. PLoS ONE, 13.

Tasic, 2016, Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nat. Neurosci., 19, 335, 10.1038/nn.4216

Tasic, 2018, Shared and distinct transcriptomic cell types across neocortical areas, Nature, 563, 72, 10.1038/s41586-018-0654-5

Zeisel, 2015, Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science, 347, 1138, 10.1126/science.aaa1934

Tasic, 2018, Single cell transcriptomics in neuroscience: Cell classification and beyond, Curr. Opin. Neurobiol., 50, 242, 10.1016/j.conb.2018.04.021

Lee, 2010, The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors, J. Neurosci., 30, 16796, 10.1523/JNEUROSCI.1869-10.2010

Xu, 2010, Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells, J. Comp. Neurol., 518, 389, 10.1002/cne.22229

Rudy, 2011, Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons, Dev. Neurobiol., 71, 45, 10.1002/dneu.20853

Gonchar, 2007, Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining, Front. Neuroanat., 1, 3

Kubota, 2011, Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons, Cereb Cortex, 21, 1803, 10.1093/cercor/bhq252

Riedemann, 2016, Immunocytochemical heterogeneity of somatostatin-expressing GABAergic interneurons in layers II and III of the mouse cingulate cortex: A combined immunofluorescence/design-based stereologic study, J. Comp. Neurol., 524, 2281, 10.1002/cne.23948

Gupta, 2000, Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex, Science, 287, 273, 10.1126/science.287.5451.273

Anderson, 1997, Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes, Science, 278, 474, 10.1126/science.278.5337.474

Tamamaki, 1997, Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone, J. Neurosci., 17, 8313, 10.1523/JNEUROSCI.17-21-08313.1997

Lavdas, 1999, The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex, J. Neurosci., 19, 7881, 10.1523/JNEUROSCI.19-18-07881.1999

Wichterle, 1999, Young neurons from medial ganglionic eminence disperse in adult and embryonic brain, Nat. Neurosci., 2, 461, 10.1038/8131

Anderson, 2001, Distinct cortical migrations from the medial and lateral ganglionic eminences, Development, 128, 353, 10.1242/dev.128.3.353

Wonders, 2006, The origin and specification of cortical interneurons, Nat. Rev. Neurosci., 7, 687, 10.1038/nrn1954

Gelman, 2011, A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area, J. Neurosci., 31, 16570, 10.1523/JNEUROSCI.4068-11.2011

Brandao, 2015, Interplay of environmental signals and progenitor diversity on fate specification of cortical GABAergic neurons, Front. Cell. Neurosci., 9, 149, 10.3389/fncel.2015.00149

Hu, 2017, Cortical interneuron development: A tale of time and space, Development, 144, 3867, 10.1242/dev.132852

Fishell, 2009, The developmental integration of cortical interneurons into a functional network, Curr. Top. Dev. Biol., 87, 81, 10.1016/S0070-2153(09)01203-4

Inan, 2012, Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence, Cereb Cortex, 22, 820, 10.1093/cercor/bhr148

Basu, 2013, A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow, Neuron, 79, 1208, 10.1016/j.neuron.2013.07.001

Taniguchi, 2013, The spatial and temporal origin of chandelier cells in mouse neocortex, Science, 339, 70, 10.1126/science.1227622

Nery, 2002, The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations, Nat. Neurosci., 5, 1279, 10.1038/nn971

Fogarty, 2007, Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex, J. Neurosci., 27, 10935, 10.1523/JNEUROSCI.1629-07.2007

Miyoshi, 2010, Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons, J. Neurosci., 30, 1582, 10.1523/JNEUROSCI.4515-09.2010

Anderson, 1999, Differential origins of neocortical projection and local circuit neurons: Role of Dlx genes in neocortical interneuronogenesis, Cereb Cortex, 9, 646, 10.1093/cercor/9.6.646

Casarosa, 1999, Mash1 regulates neurogenesis in the ventral telencephalon, Development, 126, 525, 10.1242/dev.126.3.525

Horton, 1999, Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1, Mol. Cell. Neurosci., 14, 355, 10.1006/mcne.1999.0791

Vogt, 2014, Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position, Neuron, 82, 350, 10.1016/j.neuron.2014.02.030

Hu, 2017, Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons, Development, 144, 2837, 10.1242/dev.150664

Munguba, H., Nikouei, K., Hochgerner, H., Oberst, P., Kouznetsova, A., Ryge, J., Batista-Brito, R., Munoz-Manchado, A.B., Close, J., and Linnarsson, S. (2019). Transcriptional maintenance of cortical somatostatin interneuron subtype identity during migration. BioRxiv, 593285.

Ciceri, 2013, Lineage-specific laminar organization of cortical GABAergic interneurons, Nat. Neurosci., 16, 1199, 10.1038/nn.3485

Mi, 2018, Early emergence of cortical interneuron diversity in the mouse embryo, Science, 360, 81, 10.1126/science.aar6821

Gonchar, 1997, Three distinct families of GABAergic neurons in rat visual cortex, Cereb Cortex, 7, 347, 10.1093/cercor/7.4.347

Nassar, 2015, Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum, Front. Neural Circuits, 9, 20, 10.3389/fncir.2015.00020

Wouterlood, 2000, Sparse colocalization of somatostatin- and GABA-immunoreactivity in the entorhinal cortex of the rat, Hippocampus, 10, 77, 10.1002/(SICI)1098-1063(2000)10:1<77::AID-HIPO8>3.0.CO;2-P

Kowianski, 2004, Neuropeptide-containing neurons in the endopiriform region of the rat: Morphology and colocalization with calcium-binding proteins and nitric oxide synthase, Brain Res., 996, 97, 10.1016/j.brainres.2003.10.020

Lepousez, 2010, Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb, J. Comp. Neurol., 518, 1976, 10.1002/cne.22317

McDonald, 2015, GABAergic somatostatin-immunoreactive neurons in the amygdala project to the entorhinal cortex, Neuroscience, 290, 227, 10.1016/j.neuroscience.2015.01.028

Jinno, 2000, Colocalization of parvalbumin and somatostatin-like immunoreactivity in the mouse hippocampus: Quantitative analysis with optical dissector, J. Comp. Neurol., 428, 377, 10.1002/1096-9861(20001218)428:3<377::AID-CNE1>3.0.CO;2-L

Kossut, 2016, Somatostatin and Somatostatin-Containing Neurons in Shaping Neuronal Activity and Plasticity, Front. Neural Circuits, 10, 48

Halabisky, 2006, Electrophysiological classification of somatostatin-positive interneurons in mouse sensorimotor cortex, J. Neurophysiol., 96, 834, 10.1152/jn.01079.2005

Ma, 2006, Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice, J. Neurosci., 26, 5069, 10.1523/JNEUROSCI.0661-06.2006

Xu, 2006, Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin, J. Comp. Neurol., 499, 144, 10.1002/cne.21101

Tremblay, 2016, GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits, Neuron, 91, 260, 10.1016/j.neuron.2016.06.033

Morrison, 1989, Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey, J. Comp. Neurol., 283, 212, 10.1002/cne.902830205

Tamamaki, 2010, Long-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function, Front. Neurosci., 4, 202, 10.3389/fnins.2010.00202

McGarry, 2010, Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes, Front. Neural Circuits, 4, 12

Packer, 2011, Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: A canonical microcircuit for inhibition?, J. Neurosci., 31, 13260, 10.1523/JNEUROSCI.3131-11.2011

Czeiger, 1997, Comparison of the distribution of parvalbumin-immunoreactive and other synapses onto the somata of callosal projection neurons in mouse visual and somatosensory cortex, J. Comp. Neurol., 379, 198, 10.1002/(SICI)1096-9861(19970310)379:2<198::AID-CNE3>3.0.CO;2-Z

Druga, 2009, Neocortical inhibitory system, Folia Biol., 55, 201

DeFelipe, 1990, A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons, Neuroscience, 37, 655, 10.1016/0306-4522(90)90097-N

DeFelipe, 1989, Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity, Brain Res., 503, 49, 10.1016/0006-8993(89)91702-2

Kawaguchi, 2002, Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex, J. Neurocytol., 31, 277, 10.1023/A:1024126110356

Tomioka, 2015, Corticofugal GABAergic projection neurons in the mouse frontal cortex, Front. Neuroanat., 9, 133, 10.3389/fnana.2015.00133

Heynen, 1991, Induction of RSA-like oscillations in both the in-vitro and in-vivo hippocampus, Neuroreport, 2, 401, 10.1097/00001756-199107000-00012

Toth, 1993, Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex, J. Neurosci., 13, 3712, 10.1523/JNEUROSCI.13-09-03712.1993

Gulyas, 2003, Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum, Eur. J. Neurosci., 17, 1861, 10.1046/j.1460-9568.2003.02630.x

Jinno, 2007, Neuronal diversity in GABAergic long-range projections from the hippocampus, J. Neurosci., 27, 8790, 10.1523/JNEUROSCI.1847-07.2007

Okhotin, 2003, Subcortical white matter interstitial cells: Their connections, neurochemical specialization, and role in the histogenesis of the cortex, Neurosci. Behav. Physiol., 33, 177, 10.1023/A:1021778015886

Wang, 2004, Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat, J. Physiol., 561, 65, 10.1113/jphysiol.2004.073353

Xu, 2013, Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4, Neuron, 77, 155, 10.1016/j.neuron.2012.11.004

1990, The pyramidal cell and its local-circuit interneurons: A hypothetical unit of the Mammalian cerebral cortex, J. Cogn. Neurosci., 2, 180, 10.1162/jocn.1990.2.3.180

Kawaguchi, 1996, Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex, J. Neurosci., 16, 2701, 10.1523/JNEUROSCI.16-08-02701.1996

Shlosberg, 2003, Inhibitory effect of mouse neocortex layer I on the underlying cellular network, Eur. J. Neurosci., 18, 2751, 10.1111/j.1460-9568.2003.03016.x

Oliva, 2000, Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons, J. Neurosci., 20, 3354, 10.1523/JNEUROSCI.20-09-03354.2000

Kubota, 1994, Three classes of GABAergic interneurons in neocortex and neostriatum, Jpn. J. Physiol., 44, S145

Sohn, 2014, Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex, J. Comp. Neurol., 522, 1506, 10.1002/cne.23477

Perrenoud, 2012, Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse, Front. Neural Circuits, 6, 36, 10.3389/fncir.2012.00036

Parra, 1998, How many subtypes of inhibitory cells in the hippocampus?, Neuron, 20, 983, 10.1016/S0896-6273(00)80479-1

Battaglia, 2013, Beyond the frontiers of neuronal types, Front. Neural Circuits, 7, 13, 10.3389/fncir.2013.00013

Harris, K.D., Hochgerner, H., Skene, N.G., Magno, L., Katona, L., Bengtsson Gonzales, C., Somogyi, P., Kessaris, N., Linnarsson, S., and Hjerling-Leffler, J. (2018). Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLoS Biol., 16.

Rees, 2017, Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance, Curr. Med. Chem., 24, 3077, 10.2174/0929867324666170414163506

Kawaguchi, 1995, Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex, J. Neurosci., 15, 2638, 10.1523/JNEUROSCI.15-04-02638.1995

Kawaguchi, 1993, Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex, J. Neurophysiol., 69, 416, 10.1152/jn.1993.69.2.416

Bacci, 2003, Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses, J. Neurosci., 23, 9664, 10.1523/JNEUROSCI.23-29-09664.2003

Karagiannis, 2009, Classification of NPY-expressing neocortical interneurons, J. Neurosci., 29, 3642, 10.1523/JNEUROSCI.0058-09.2009

Riedemann, S., Sutor, B., Bergami, M., and Riedemann, T. (2019). Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J. Comp. Neurol.

Kawaguchi, 1993, Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex, J. Neurophysiol., 70, 387, 10.1152/jn.1993.70.1.387

Schreiber, 2009, Two distinct mechanisms shape the reliability of neural responses, J. Neurophysiol., 101, 2239, 10.1152/jn.90711.2008

Tiesinga, 2008, Regulation of spike timing in visual cortical circuits, Nat. Rev. Neurosci., 9, 97, 10.1038/nrn2315

Gibson, 1999, Two networks of electrically coupled inhibitory neurons in neocortex, Nature, 402, 75, 10.1038/47035

Beierlein, 2003, Two dynamically distinct inhibitory networks in layer 4 of the neocortex, J. Neurophysiol., 90, 2987, 10.1152/jn.00283.2003

Naka, 2019, Complementary networks of cortical somatostatin interneurons enforce layer specific control, Elife, 8, e43696, 10.7554/eLife.43696

Yu, J., Hu, H., Agmon, A., and Svoboda, K. (2019). Principles Governing the Dynamics of GABAergic Interneurons in the Barrel Cortex. BioRxiv.

Kwan, 2012, Dissection of cortical microcircuits by single-neuron stimulation in vivo, Curr. Biol., 22, 1459, 10.1016/j.cub.2012.06.007

Cruikshank, 2010, Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons, Neuron, 65, 230, 10.1016/j.neuron.2009.12.025

Silberberg, 2007, Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells, Neuron, 53, 735, 10.1016/j.neuron.2007.02.012

Obermayer, 2018, Lateral inhibition by Martinotti interneurons is facilitated by cholinergic inputs in human and mouse neocortex, Nat. Commun., 9, 4101, 10.1038/s41467-018-06628-w

Hu, 2016, Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts, J. Neurosci., 36, 6906, 10.1523/JNEUROSCI.0739-16.2016

Wall, 2016, Brain-Wide Maps of Synaptic Input to Cortical Interneurons, J. Neurosci., 36, 4000, 10.1523/JNEUROSCI.3967-15.2016

Kapfer, 2007, Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex, Nat. Neurosci., 10, 743, 10.1038/nn1909

Fanselow, 2008, Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex, J. Neurophysiol., 100, 2640, 10.1152/jn.90691.2008

Chen, 2015, An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity, Nat. Neurosci., 18, 892, 10.1038/nn.4002

Hilscher, M.M., Leao, R.N., Edwards, S.J., Leao, K.E., and Kullander, K. (2017). Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation. PLoS Biol., 15.

Jouhanneau, 2018, Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits, Neuron, 97, 611, 10.1016/j.neuron.2018.01.037

Shad, K.F. (2017). Sculpting Cerebral Cortex with Serotonin in Rodent and Primate. Serotonin-A Chemical Messenger Between All Types of Living Cells, IntechOpen.

Paspalas, 2001, Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex, Brain Res., 891, 158, 10.1016/S0006-8993(00)03193-0

Ferezou, 2002, 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons, J. Neurosci., 22, 7389, 10.1523/JNEUROSCI.22-17-07389.2002

Puig, 2011, Serotonin and prefrontal cortex function: Neurons, networks, and circuits, Mol. Neurobiol., 44, 449, 10.1007/s12035-011-8214-0

Puig, 2010, Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors, J. Neurosci., 30, 2211, 10.1523/JNEUROSCI.3335-09.2010

Athilingam, 2017, Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons, Elife, 6, e31991, 10.7554/eLife.31991

Tseng, 2007, D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex, Synapse, 61, 843, 10.1002/syn.20432

Anastasiades, P.G., Boada, C., and Carter, A.G. (2018). Cell-Type-Specific D1 Dopamine Receptor Modulation of Projection Neurons and Interneurons in the Prefrontal Cortex. Cereb Cortex.

Koyanagi, 2010, Presynaptic interneuron subtype- and age-dependent modulation of GABAergic synaptic transmission by beta-adrenoceptors in rat insular cortex, J. Neurophysiol., 103, 2876, 10.1152/jn.00972.2009

Kawaguchi, 1998, Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex, J. Neurosci., 18, 6963, 10.1523/JNEUROSCI.18-17-06963.1998

Caputi, 2009, Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition, Cereb Cortex, 19, 1345, 10.1093/cercor/bhn175

Pfeffer, 2013, Inhibition of inhibition in visual cortex: The logic of connections between molecularly distinct interneurons, Nat. Neurosci., 16, 1068, 10.1038/nn.3446

Pi, 2013, Cortical interneurons that specialize in disinhibitory control, Nature, 503, 521, 10.1038/nature12676

Walker, 2016, Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells, Nat. Commun., 7, 13664, 10.1038/ncomms13664

Jiang, 2015, Principles of connectivity among morphologically defined cell types in adult neocortex, Science, 350, aac9462, 10.1126/science.aac9462

Ma, 2012, Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype, J. Neurosci., 32, 983, 10.1523/JNEUROSCI.5007-11.2012

Marlin, 2014, GABA-A receptor inhibition of local calcium signaling in spines and dendrites, J. Neurosci., 34, 15898, 10.1523/JNEUROSCI.0869-13.2014

Nigro, 2018, Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex, J. Neurosci., 38, 1622, 10.1523/JNEUROSCI.2415-17.2017

Zhou, 2017, Subcellular Targeting of VIP Boutons in Mouse Barrel Cortex is Layer-Dependent and not Restricted to Interneurons, Cereb Cortex, 27, 5353, 10.1093/cercor/bhx220

Kawaguchi, 1998, Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex, Neuroscience, 85, 677, 10.1016/S0306-4522(97)00685-4

Kubota, 2016, The Diversity of Cortical Inhibitory Synapses, Front. Neural Circuits, 10, 27, 10.3389/fncir.2016.00027

Sohn, 2016, Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex, Front. Neuroanat., 10, 124, 10.3389/fnana.2016.00124

Jackson, 2016, VIP+ interneurons control neocortical activity across brain states, J. Neurophysiol., 115, 3008, 10.1152/jn.01124.2015

Adesnik, 2012, A neural circuit for spatial summation in visual cortex, Nature, 490, 226, 10.1038/nature11526

Roux, 2015, Tasks for inhibitory interneurons in intact brain circuits, Neuropharmacology, 88, 10, 10.1016/j.neuropharm.2014.09.011

Zhang, 2014, Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing, Science, 345, 660, 10.1126/science.1254126

Li, 2015, Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex, Cereb Cortex, 25, 1782, 10.1093/cercor/bht417

Tan, 2008, Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons, Proc. Natl. Acad. Sci. USA, 105, 2187, 10.1073/pnas.0710628105

Lee, 2013, A disinhibitory circuit mediates motor integration in the somatosensory cortex, Nat. Neurosci., 16, 1662, 10.1038/nn.3544

Gentet, 2012, Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex, Nat. Neurosci., 15, 607, 10.1038/nn.3051

Munoz, 2017, Layer-specific modulation of neocortical dendritic inhibition during active wakefulness, Science, 355, 954, 10.1126/science.aag2599

Munoz, 2014, Channelrhodopsin-assisted patching: In vivo recording of genetically and morphologically identified neurons throughout the brain, Cell Rep., 9, 2304, 10.1016/j.celrep.2014.11.042

Cottam, 2013, Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing, J. Neurosci., 33, 19567, 10.1523/JNEUROSCI.2624-13.2013

Fu, 2015, A cortical disinhibitory circuit for enhancing adult plasticity, Elife, 4, e05558, 10.7554/eLife.05558

Cone, J.J., Scantlen, M.D., Histed, M.H., and Maunsell, J.H.R. (2019). Different Inhibitory Interneuron Cell Classes Make Distinct Contributions to Visual Contrast Perception. Eneuro, 6.

Ayaz, 2013, Locomotion controls spatial integration in mouse visual cortex, Curr. Biol., 23, 890, 10.1016/j.cub.2013.04.012

Karnani, 2016, Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex, Neuron, 90, 86, 10.1016/j.neuron.2016.02.037

Yang, 2018, Development of the whisker-to-barrel cortex system, Curr. Opin. Neurobiol., 53, 29, 10.1016/j.conb.2018.04.023

Dufour, 2016, Development of Synaptic Boutons in Layer 4 of the Barrel Field of the Rat Somatosensory Cortex: A Quantitative Analysis, Cereb Cortex, 26, 838

Petersen, 2007, The functional organization of the barrel cortex, Neuron, 56, 339, 10.1016/j.neuron.2007.09.017

Makino, 2015, Learning enhances the relative impact of top-down processing in the visual cortex, Nat. Neurosci., 18, 1116, 10.1038/nn.4061

Zhang, Y., Hu, Y., Guan, S., Hong, X., Wang, Z., and Li, X. (2014). Neural substrate of initiation of cross-modal working memory retrieval. PLoS ONE, 9.

Kato, 2015, Flexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance, Neuron, 88, 1027, 10.1016/j.neuron.2015.10.024

Natan, 2015, Complementary control of sensory adaptation by two types of cortical interneurons, Elife, 4, e09868, 10.7554/eLife.09868

Yavorska, 2016, Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits, Front. Neural Circuits, 10, 76, 10.3389/fncir.2016.00076

Chen, 2015, Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning, Nat. Neurosci., 18, 1109, 10.1038/nn.4049

Kim, 2016, Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory, Neuron, 92, 902, 10.1016/j.neuron.2016.09.023

Kamigaki, 2017, Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior, Nat. Neurosci., 20, 854, 10.1038/nn.4554

Scheuss, 2014, Function of dendritic spines on hippocampal inhibitory neurons, Cereb Cortex, 24, 3142, 10.1093/cercor/bht171

Keck, 2011, Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex, Neuron, 71, 869, 10.1016/j.neuron.2011.06.034

Post, 2018, Depression: The search for separable behaviors and circuits, Curr. Opin. Neurobiol., 49, 192, 10.1016/j.conb.2018.02.018

Miller, 2001, An integrative theory of prefrontal cortex function, Annu. Rev. Neurosci., 24, 167, 10.1146/annurev.neuro.24.1.167

Hamani, 2011, The subcallosal cingulate gyrus in the context of major depression, Biol. Psychiatry, 69, 301, 10.1016/j.biopsych.2010.09.034

Guilloux, 2012, Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression, Mol. Psychiatry, 17, 1130, 10.1038/mp.2011.113

Tripp, 2012, Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder, Am. J. Psychiatry, 169, 1194, 10.1176/appi.ajp.2012.12020248

Oh, 2019, The Role of Dendritic Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in Depression, Biol. Psychiatry, 85, 517, 10.1016/j.biopsych.2018.09.026

Fuchs, 2017, Disinhibition of somatostatin-positive interneurons by deletion of postsynaptic GABAA receptors, Mol. Psychiatry, 22, 787, 10.1038/mp.2017.110

Fuchs, 2017, Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state, Mol. Psychiatry, 22, 920, 10.1038/mp.2016.188

Engin, 2008, Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: Behavioral and neurophysiological evidence, Neuroscience, 157, 666, 10.1016/j.neuroscience.2008.09.037

Inoue, 1988, Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism, J. Physiol., 407, 177, 10.1113/jphysiol.1988.sp017409

Galarraga, 2007, Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons, Neuroscience, 146, 537, 10.1016/j.neuroscience.2007.01.032

Lucas, 2015, Protein phosphatase modulation of somatostatin receptor signaling in the mouse hippocampus, Neuropharmacology, 99, 232, 10.1016/j.neuropharm.2015.07.004

Riedemann, 2019, Long-lasting actions of somatostatin on pyramidal cell excitability in the mouse cingulate cortex, Neurosci. Lett., 698, 217, 10.1016/j.neulet.2019.01.034

2012, Neuropeptide transmission in brain circuits, Neuron, 76, 98, 10.1016/j.neuron.2012.09.014

Sauer, 2015, Impaired fast-spiking interneuron function in a genetic mouse model of depression, Elife, 4, e04979, 10.7554/eLife.04979