Các kích thích khác nhau kích hoạt các con đường bẫy ngoại bào của bạch cầu trung tính
Tóm tắt
Bạch cầu trung tính giải phóng các bẫy ngoại bào (NETs) mà bắt giữ các tác nhân gây bệnh và có chức năng gây bệnh trong nhiều bệnh lý khác nhau. Chúng tôi đã nghiên cứu các con đường NETosis được kích thích bởi năm tác nhân; PMA, ionophore canxi A23187, nigericin, Candida albicans và Group B Streptococcus. Chúng tôi đã nghiên cứu sự sản xuất NET trong các bạch cầu trung tính từ những người hiến tặng khỏe mạnh với các chất ức chế các phân tử thiết yếu cho NETs do PMA kích thích, bao gồm protein kinase C, canxi, các gốc tự do oxy, các enzyme myeloperoxidase (MPO) và elastase bạch cầu trung tính. Thêm vào đó, các bạch cầu trung tính từ bệnh nhân mắc bệnh hạt mãn tính, có sự đột biến trong phức hợp NADPH oxidase hoặc một bệnh nhân thiếu MPO cũng đã được xem xét. Chúng tôi cho thấy rằng PMA, C. albicans và GBS sử dụng một con đường liên quan để kích thích NET, trong khi các ionophore yêu cầu một con đường thay thế nhưng các NET được sản xuất bởi tất cả các tác nhân kích thích đều có hoạt tính proteolitic, tiêu diệt vi khuẩn và chủ yếu được cấu tạo từ DNA nhiễm sắc thể. Do đó, chúng tôi chứng minh rằng NETosis diễn ra thông qua nhiều cơ chế tín hiệu, gợi ý rằng sự loại bỏ của NETs là quan trọng trong phòng thủ của chủ thể.
Từ khóa
Tài liệu tham khảo
Amini, 2016, NET formation can occur independently of RIPK3 and MLKL signaling, European Journal of Immunology, 46, 178, 10.1002/eji.201545615
Amulic, 2012, Neutrophil function: from mechanisms to disease, Annual Review of Immunology, 30, 459, 10.1146/annurev-immunol-020711-074942
Bardoel, 2014, The balancing act of neutrophils, Cell Host & Microbe, 15, 526, 10.1016/j.chom.2014.04.011
Barrientos, 2013, An improved strategy to recover large fragments of functional human neutrophil extracellular traps, Frontiers in Immunology, 4, 166, 10.3389/fimmu.2013.00166
Brinkmann, 2012, Automatic quantification of in vitro NET formation, Frontiers in Immunology, 3, 413, 10.3389/fimmu.2012.00413
Brinkmann, 2004, Neutrophil extracellular traps kill Bacteria, Science, 303, 1532, 10.1126/science.1092385
Brinkmann, 2012, Neutrophil extracellular traps: is immunity the second function of chromatin?, The Journal of Cell Biology, 198, 773, 10.1083/jcb.201203170
Causey, 2008, An improved synthesis of haloaceteamidine-based inactivators of protein arginine deiminase 4 (PAD4), Tetrahedron Letters, 49, 4383, 10.1016/j.tetlet.2008.05.021
den Dunnen, 2001, Nomenclature for the description of human sequence variations, Human Genetics, 109, 121, 10.1007/s004390100505
Desai, 2016, PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling, European Journal of Immunology, 46, 223, 10.1002/eji.201545605
DeSouza-Vieira, 2016, Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+], Journal of Leukocyte Biology, 100, 801, 10.1189/jlb.4A0615-261RR
Douda, 2015, SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx, PNAS, 112, 2817, 10.1073/pnas.1414055112
Ermert, 2009, Fungal and bacterial killing by neutrophils, Methods in Molecular Biology, 470, 293, 10.1007/978-1-59745-204-5_21
Fuchs, 2007, Novel cell death program leads to neutrophil extracellular traps, The Journal of Cell Biology, 176, 231, 10.1083/jcb.200606027
Fuchs, 2012, Neutrophil extracellular trap (NET) impact on deep vein thrombosis, Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1777, 10.1161/ATVBAHA.111.242859
Fuhrmann, 2015, Chemical biology of protein arginine modifications in epigenetic regulation, Chemical Reviews, 115, 5413, 10.1021/acs.chemrev.5b00003
Gazendam, 2016, Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects, The Journal of Immunology, 196, 1272, 10.4049/jimmunol.1501811
Gennaro, 1984, Monitoring of cytosolic free Ca2+ in C5a-stimulated neutrophils: loss of receptor-modulated Ca2+ stores and Ca2+ uptake in granule-free cytoplasts, PNAS, 81, 1416, 10.1073/pnas.81.5.1416
Ghari, 2016, Citrullination-acetylation interplay guides E2F-1 activity during the inflammatory response, Science Advances, 2, e1501257, 10.1126/sciadv.1501257
Gray, 2013, Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps, Journal of Inflammation, 10, 12, 10.1186/1476-9255-10-12
Gupta, 2014, Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A, PLoS One, 9, e97088, 10.1371/journal.pone.0097088
Hakkim, 2011, Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation, Nature Chemical Biology, 7, 75, 10.1038/nchembio.496
Hakkim, 2010, Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis, PNAS, 107, 9813, 10.1073/pnas.0909927107
Henriet, 2012, Aspergillus nidulans and chronic granulomatous disease: a unique host-pathogen interaction, The Journal of Infectious Diseases, 206, 1128, 10.1093/infdis/jis473
Heyworth, 2003, Chronic granulomatous disease, Current Opinion in Immunology, 15, 578, 10.1016/S0952-7915(03)00109-2
Hosseinzadeh, 2016, Nicotine induces neutrophil extracellular traps, Journal of Leukocyte Biology, 100, 1105, 10.1189/jlb.3AB0815-379RR
Jones, 2012, Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors, ACS Chemical Biology, 7, 160, 10.1021/cb200258q
Kaplan, 2012, Neutrophil extracellular traps: double-edged swords of innate immunity, The Journal of Immunology, 189, 2689, 10.4049/jimmunol.1201719
Kawalkowska, 2016, Abrogation of collagen-induced arthritis by a peptidyl arginine deiminase inhibitor is associated with modulation of T cell-mediated immune responses, Scientific Reports, 6, 26430, 10.1038/srep26430
Kessenbrock, 2009, Netting neutrophils in autoimmune small-vessel vasculitis, Nature Medicine, 15, 623, 10.1038/nm.1959
Knight, 2015, Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice, Annals of the Rheumatic Diseases, 74, 2199, 10.1136/annrheumdis-2014-205365
Kolaczkowska, 2013, Neutrophil recruitment and function in health and inflammation, Nature Reviews Immunology, 13, 159, 10.1038/nri3399
Konig, 2016, A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination, Frontiers in Immunology, 7, 461, 10.3389/fimmu.2016.00461
Lewis, 2015, Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation, Nature Chemical Biology, 11, 189, 10.1038/nchembio.1735
Lood, 2016, Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease, Nature Medicine, 22, 146, 10.1038/nm.4027
Losman, 1992, Monoclonal autoantibodies to subnucleosomes from a MRL/Mp(-)+/+ mouse. Oligoclonality of the antibody response and recognition of a determinant composed of histones H2A, H2B, and DNA, Journal of Immunology, 148, 1561, 10.4049/jimmunol.148.5.1561
Macdonald, 2001, The discovery of a potent, intracellular, orally bioavailable, long duration inhibitor of human neutrophil elastase--GW311616A a development candidate, Bioorganic & Medicinal Chemistry Letters, 11, 895, 10.1016/S0960-894X(01)00078-6
Manzenreiter, 2012, Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy, Journal of Cystic Fibrosis, 11, 84, 10.1016/j.jcf.2011.09.008
Martinod, 2013, Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice, PNAS, 110, 8674, 10.1073/pnas.1301059110
Metzler, 2014, A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis, Cell Reports, 8, 883, 10.1016/j.celrep.2014.06.044
Neeli, 2013, Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release, Frontiers in Immunology, 4, 38, 10.3389/fimmu.2013.00038
Papayannopoulos, 2010, Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps, The Journal of Cell Biology, 191, 677, 10.1083/jcb.201006052
Remijsen, 2011, Dying for a cause: netosis, mechanisms behind an antimicrobial cell death modality, Cell Death and Differentiation, 18, 581, 10.1038/cdd.2011.1
Remijsen, 2011, Neutrophil extracellular trap cell death requires both autophagy and superoxide generation, Cell Research, 21, 290, 10.1038/cr.2010.150
Rochael, 2015, Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites, Scientific Reports, 5, 18302, 10.1038/srep18302
Scapini, 2014, Social networking of human neutrophils within the immune system, Blood, 124, 710, 10.1182/blood-2014-03-453217
Sollberger, 2016, Neutrophil extracellular trap formation is Independent of De Novo Gene expression, PLoS One, 11, e0157454, 10.1371/journal.pone.0157454
Tran, 2016, Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum, PLOS Pathogens, 12, e1005686, 10.1371/journal.ppat.1005686
van Venrooij, 2004, Anti-CCP antibodies: the new rheumatoid factor in the serology of rheumatoid arthritis, Autoimmunity Reviews, 3 Suppl 1, S17
Virreira Winter, 2016, Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity, Scientific Reports, 6, 24242, 10.1038/srep24242