Các vi sinh vật Asgard đa dạng bao gồm ngành mới Gerdarchaeota tham gia vào phân hủy chất hữu cơ

Springer Science and Business Media LLC - Tập 63 - Trang 886-897 - 2020
Mingwei Cai1,2, Yang Liu1, Xiuran Yin3,4, Zhichao Zhou1,5, Michael W. Friedrich3,6, Tim Richter-Heitmann3, Rolf Nimzyk7, Ajinkya Kulkarni3, Xiaowen Wang1,2, Wenjin Li1, Jie Pan1, Yuchun Yang5, Ji-Dong Gu5, Meng Li1
1Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
3Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
4MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
5Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
6MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
7Department of Microbe-Plant Interactions, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany

Tóm tắt

Asgard là một siêu ngành vi khuẩn cổ (archaeal superphylum) có thể chứa chìa khóa để hiểu nguồn gốc của eukaryotes, nhưng sự đa dạng và vai trò sinh thái của nó vẫn chưa được hiểu rõ. Trong nghiên cứu này, chúng tôi đã tái tạo 15 bộ gen được lắp ghép từ metagenome từ trầm tích ven biển, bao trùm hầu hết các loại vi khuẩn Asgard đã biết và một nhóm mới, mà chúng tôi đề xuất là một ngành Asgard mới có tên là “Gerdarchaeota”. Các phân tích gen dự đoán rằng Gerdarchaeota là các vi khuẩn yếm khí tùy ý trong việc sử dụng cả carbon hữu cơ và vô cơ. Không giống như họ hàng gần nhất của nó là Heimdallarchaeota, Gerdarchaeota có các gen mã hóa cho cellulase và các enzyme tham gia vào con đường Wood—Ljungdahl dựa trên tetrahydromethanopterin. Phân tích transcriptomics cho thấy hầu hết các vi khuẩn Asgard mà chúng tôi xác định có khả năng phân hủy chất hữu cơ, bao gồm peptide, axit amin và axit béo, chiếm giữ các vị trí sinh thái ở các độ sâu khác nhau của các lớp trầm tích. Nhìn chung, nghiên cứu này mở rộng sự đa dạng của vi khuẩn Asgard bí ẩn và cung cấp bằng chứng cho vai trò sinh thái của chúng trong trầm tích ven biển.

Từ khóa

#Asgard archaea #Gerdarchaeota #metagenomic #phân hủy chất hữu cơ #trầm tích ven biển

Tài liệu tham khảo

Bagos, P.G., Tsirigos, K.D., Plessas, S.K., Liakopoulos, T.D., and Hamodrakas, S.J. (2008). Prediction of signal peptides in archaea. Protein Eng Des Sel 22, 27–35. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19, 455–477. Bergkessel, M., Basta, D.W., and Newman, D.K. (2016). The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 14, 549–562. Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sorensen, K.B., Anderson, R., Fredricks, H.F., Elvert, M., Kelly, T.J., Schrag, D.P., et al. (2006). Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103, 3846–3851. Breithaupt, J.L., Smoak, J.M., Smith III, T.J., Sanders, C.J., and Hoare, A. (2012). Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Glob Biogeochem Cycle 26, 2012GB004375. Bulzu, P.A., Andrei, A.Ş., Salcher, M.M., Mehrshad, M., Inoue, K., Kandori, H., Beja, O., Ghai, R., and Banciu, H.L. (2019). Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 4, 1129–1137. Burdige, D.J. (2007). Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets. Chem Rev 107, 467–485. Burns, J.A., Pittis, A.A., and Kim, E. (2018). Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol 2, 697–704. Caspi, R., Foerster, H., Fulcher, C.A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S.Y., Shearer, A.G., Tissier, C., et al. (2007). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36, D623–D631. Criscuolo, A., and Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10, 210. Da Cunha, V., Gaia, M., Gadelle, D., Nasir, A., and Forterre, P. (2017). Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet 13, e1006810. Da Cunha, V., Gaia, M., Nasir, A., and Forterre, P. (2018). Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet 14, e1007215. De Rosa, E., Checchetto, V., Franchin, C., Bergantino, E., Berto, P., Szabó, I., Giacometti, G.M., Arrigoni, G., and Costantini, P. (2015). [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark. Sci Rep 5, 12424. Delmont, T.O., and Eren, A.M. (2018). Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6, e4320. Durbin, A.M., and Teske, A. (2012). Archaea in organic-lean and organicrich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front Microbiol 3, 168. Eddy, S.R. (2011). Accelerated profile HMM searches. PLoS Comput Biol e1002195. Greening, C., Biswas, A., Carere, C.R., Jackson, C.J., Taylor, M.C., Stott, M.B., Cook, G.M., and Morales, S.E. (2016). Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10, 761–777. Hua, Z.S., Qu, Y.N., Zhu, Q., Zhou, E.M., Qi, Y.L., Yin, Y.R., Rao, Y.Z., Tian, Y., Li, Y.X., Liu, L., et al. (2018). Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun 9, 2832. Huang, J.M., Baker, B.J., Li, J.T., and Wang, Y. (2019). New microbial lineages capable of carbon fixation and nutrient cycling in deep-sea sediments of the northern South China Sea. Appl Environ Microbiol 85, pii: e00523–19. Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. (2017). Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34, 2115–2122. Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119. Imachi, H., Nobu, M.K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., et al. (2020). Isolation of an archaeon at the prokaryote—eukaryote interface. Nature 577, 519–525. Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., Nealson, K.H., and Horikoshi, K. (2003). Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69, 7224–7235. Inagaki, F., Takai, K., Komatsu, T., Kanamatsu, T., Fujioka, K., and Horikoshi, K. (2001). Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles 5, 385–392. Jay, Z.J., Beam, J.P., Dlakić, M., Rusch, D.B., Kozubal, M.A., and Inskeep, W.P. (2018). Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat Microbiol 3, 732–740. Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240. Jørgensen, S.L., Thorseth, I.H., Pedersen, R.B., Baumberger, T., and Schleper, C. (2013). Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 4, 299. Joshi, N., and Fass, J. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428, 726–731. Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165. Kennedy, H., Beggins, J., Duarte, C.M., Fourqurean, J.W., Holmer, M., Marbà, N., and Middelburg, J.J. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints. Glob Biogeochem Cycle 24, GB4026. Konishi, Y., Asai, S., Tokushige, M., and Suzuki, T. (1999). Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi. Biotechnol Prog 15, 681–688. Kopylova, E., Noé, L., and Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–217. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. Li, M., Baker, B.J., Anantharaman, K., Jain, S., Breier, J.A., and Dick, G.J. (2015). Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun 6, 8933. Liang, L., Wang, Y., Sivan, O., and Wang, F. (2019). Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Sci China Life Sci 62, 1287–1295. Liu, Y., Zhou, Z., Pan, J., Baker, B.J., Gu, J.D., and Li, M. (2018). Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J 12, 1021–1031. Lloyd, K.G., Steen, A.D., Ladau, J., Yin, J., and Crosby, L. (2018). Phylogenetically novel uncultured microbial cells dominate Earth micro-biomes. MSystems 3, e00055–00018. Manoharan, L., Kozlowski, J.A., Murdoch, R.W., Löffler, F.E., Sousa, F.L., and Schleper, C. (2019). Metagenomes from coastal marine sediments give insights into the ecological role and cellular features of Loki- and Thorarchaeota. mBio 10, e02039–19. Marreiros, B.C., Calisto, F., Castro, P.J., Duarte, A.M., Sena, F.V., Silva, A. F., Sousa, F.M., Teixeira, M., Refojo, P.N., and Pereira, M.M. (2016). Exploring membrane respiratory chains. Biochim Biophys Acta Bioenerg 1857, 1039–1067. Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., and Silliman, B.R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9, 552–560. Mistry, J., Finn, R.D., Eddy, S.R., Bateman, A., and Punta, M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41, e121. Miyatake, T., MacGregor, B.J., and Boschker, H.T.S. (2013). Depth-related differences in organic substrate utilization by major microbial groups in intertidal marine sediment. Appl Environ Microbiol 79, 389–392. Müller, V., Chowdhury, N.P., and Basen, M. (2018). Electron bifurcation: A long-hidden energy-coupling mechanism. Annu Rev Microbiol 72, 331–353. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268–274. Nunoura, T., Chikaraishi, Y., Izaki, R., Suwa, T., Sato, T., Harada, T., Mori, K., Kato, Y., Miyazaki, M., Shimamura, S., et al. (2018). A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science 359, 559–563. Orsi, W.D., Edgcomb, V.P., Christman, G.D., and Biddle, J.F. (2013). Gene expression in the deep biosphere. Nature 499, 205–208. Pan, J., Chen, Y., Wang, Y., Zhou, Z., and Li, M. (2019). Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Microb Ecol 77, 417–428. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055. Peng, Y., Leung, H.C.M., Yiu, S.M., and Chin, F.Y.L. (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428. Peters, J.W., Schut, G.J., Boyd, E.S., Mulder, D.W., Shepard, E.M., Broderick, J.B., King, P.W., and Adams, M.W.W. (2015). [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta Mol Cell Res 1853, 1350–1369. Pruesse, E., Peplies, J., and Glöckner, F.O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829. Pushkarev, A., Inoue, K., Larom, S., Flores-Uribe, J., Singh, M., Konno, M., Tomida, S., Ito, S., Nakamura, R., Tsunoda, S.P., et al. (2018). A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599. Rawlings, N.D., Barrett, A.J., and Finn, R. (2015). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44, D343–D350. Rinke, C., Rubino, F., Messer, L.F., Youssef, N., Parks, D.H., Chuvochina, M., Brown, M., Jeffries, T., Tyson, G.W., Seymour, J.R., et al. (2019). A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J 13, 663–675. Segerer, A., Neuner, A., Kristjansson, J.K., and Stetter, K.O. (1986). Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36, 559–564. Seitz, K.W., Dombrowski, N., Eme, L., Spang, A., Lombard, J., Sieber, J. R., Teske, A.P., Ettema, T.J.G., and Baker, B.J. (2019). Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 10, 1822. Seitz, K.W., Lazar, C.S., Hinrichs, K.U., Teske, A.P., and Baker, B.J. (2016). Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10, 1696–1705. Sieber, C.M.K., Probst, A.J., Sharrar, A., Thomas, B.C., Hess, M., Tringe, S.G., and Banfield, J.F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3, 836–843. Silberstein, S., Collins, P.G., Kelleher, D.J., and Gilmore, R. (1995). The essential OST2 gene encodes the 16-kD subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms. J Cell Biol 131, 371–383. Sørensen, J., Jørgensen, B.B., and Revsbech, N.P. (1979). A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microb Ecol 5, 105–115. Sousa, F.L., Neukirchen, S., Allen, J.F., Lane, N., and Martin, W.F. (2016). Lokiarchaeon is hydrogen dependent. Nat Microbiol 1, 16034. Spang, A., Caceres, E.F., and Ettema, T.J.G. (2017). Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883. Spang, A., Saw, J.H., Jørgensen, S.L., Zaremba-Niedzwiedzka K., Martijn, J., Lind, A.E., van Eijk, R., Schleper, C., Guy, L., and Ettema, T.J.G. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179. Spang, A., Stairs, C.W., Dombrowski, N., Eme, L., Lombard, J., Caceres, E.F., Greening, C., Baker, B.J., and Ettema, T.J.G. (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 4, 1138–1148. Takai, K., and Horikoshi, K. (1999). Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297. Reitner, J., and Thiel, V. (2011). Archaea. In Encyclopedia of Geobiology. (Berlin: Springer). pp. 64–69. Vanwonterghem, I., Evans, P.N., Parks, D.H., Jensen, P.D., Woodcroft, B.J., Hugenholtz, P., and Tyson, G.W. (2016). Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1, 16170. Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A., and Reysenbach, A.L. (1999). Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65, 4375–4384. Villanueva, L., Schouten, S., and Damsté, J.S.S. (2017). Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the ‘lipid divide’. Environ Microbiol 19, 54–69. Yin, X., Wu, W., Maeke, M., Richter-Heitmann, T., Kulkarni, A.C., Oni, O. E., Wendt, J., Elvert, M., and Friedrich, M.W. (2019). CO2 conversion to methane and biomass in obligate methylotrophic methanogens in marine sediments. ISME J 13, 2107–2119. Yokobori, S., Nakajima, Y., Akanuma, S., and Yamagishi, A. (2016). Birth of archaeal cells: molecular phylogenetic analyses of G1P dehydrogenase, G3P dehydrogenases, and glycerol kinase suggest derived features of archaeal membranes having G1P polar lipids. Archaea 2016, 1–16. Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S.C., Ester, M., Foster, L.J., et al. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615. Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K.W., Anantharaman, K., Starnawski, P., Kjeldsen, K.U., et al. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358. Zhang, C.J., Pan, J., Duan, C.H., Wang, Y.M., Liu, Y., Sun, J., Zhou, H.C., Song, X., and Li, M. (2019). Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 4, e00442–19. Zhang, Y., and Zhai, W.D. (2015). Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations. Front Mar Sci 2, 00034. Zhou, Z., Liu, Y., Li, M., and Gu, J.D. (2018). Two or three domains: a new view of tree of life in the genomics era. Appl Microbiol Biotechnol 102, 3049–3058. Zhou, Z., Liu, Y., Lloyd, K.G., Pan, J., Yang, Y., Gu, J.D., and Li, M. (2019). Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J 13, 885–901. Zhou, Z., Liu, Y., Xu, W., Pan, J., Luo, Z.H., and Li, M. (2020). Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems 5, e00795–19. Zhou, Z., Meng, H., Liu, Y., Gu, J.D., and Li, M. (2017). Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Front Microbiol 8, 02148.