Sự khác biệt của các chất chuyển hóa trong ba loài Monascus gần gũi về hệ phả hệ (M. pilosus, M. ruber và M. purpureus) dựa trên các cụm gen sinh tổng hợp chất chuyển hóa thứ cấp

Yuki Higa1, Youngsoo Kim1, Md. Altaf-Ul-Amin2, Ming Huang2, Naoaki Ono2, Shigehiko Kanaya3
1R&D Center, Kobayashi Pharmaceutical Co., Ltd, Ibaraki-shi, Toyokawa, 1-30-3, Osaka, Japan
2Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Takayama-cho, Nara, 8916-5, Japan
3Data Science Center, Nara Institute of Science and Technology, Ikoma-shi, Takayama-cho, Nara, 8916-5, Japan

Tóm tắt

Tóm tắt Đặt vấn đề

Các loài thuộc chi Monascus được coi là có giá trị kinh tế và đã được sử dụng rộng rãi trong sản xuất phẩm màu thực phẩm vàng và đỏ. Đặc biệt, ba loài Monascus, cụ thể là M. pilosus, M. purpureusM. ruber, được sử dụng trong lên men thực phẩm trong ẩm thực của các nước Đông Á như Trung Quốc, Nhật Bản và Hàn Quốc. Những loài này cũng đã được sử dụng trong sản xuất nhiều loại phẩm màu tự nhiên khác nhau. Tuy nhiên, thông tin về gen và các chất chuyển hóa thứ cấp của những dòng này còn thiếu. Tại đây, chúng tôi báo cáo phân tích gen và các chất chuyển hóa thứ cấp được sản xuất bởi M. pilosus NBRC4520, M. purpureus NBRC4478 và M. ruber NBRC4483, đây là các giống chuẩn của NBRC. Chúng tôi tin rằng báo cáo này sẽ dẫn đến việc hiểu biết tốt hơn về thực phẩm gạo nấm đỏ.

Kết quả

Chúng tôi đã khảo sát sự đa dạng trong sản xuất các chất chuyển hóa thứ cấp ở ba loài Monascus (M. pilosus, M. purpureusM. ruber) tại cả cấp độ metabolome thông qua phân tích LCMS và ở cấp độ gen. Cụ thể, các giống M. pilosus NBRC4520, M. purpureus NBRC4478 và M. ruber NBRC4483 được sử dụng trong nghiên cứu này. Phân tích giải trình tự cặp đầu Illumina MiSeq 300 bp đã tạo ra 17 triệu đoạn ngắn chất lượng cao cho mỗi loài, tương ứng với 200 lần kích thước gen. Chúng tôi đã đo các phẩm màu và các chất chuyển hóa liên quan đến chúng thông qua phân tích LCMS. Màu sắc trong môi trường lỏng tương ứng với các phẩm màu và các chất chuyển hóa liên quan được sản xuất bởi ba loài rất khác nhau. Các cụm gen sinh tổng hợp chất chuyển hóa thứ cấp của ba loài Monascus cũng đã phân kỳ, xác nhận rằng M. pilosusM. purpureus khác nhau về hóa phân loại. M. ruber có các cụm gen sinh tổng hợp và chất chuyển hóa thứ cấp tương tự như M. pilosus. Việc so sánh các chất chuyển hóa thứ cấp sản xuất cũng đã tiết lộ sự phân kỳ giữa ba loài.

Kết luận

Các phát hiện của chúng tôi rất quan trọng cho việc cải thiện việc sử dụng các loài Monascus trong ngành công nghiệp thực phẩm và lĩnh vực công nghiệp. Tuy nhiên, với sự chú ý đến an toàn thực phẩm, chúng tôi cần xác định liệu các độc tố được sản xuất bởi một số dòng Monascus có tồn tại trong bộ gen hay trong metabolome hay không.

Từ khóa

#Monascus #chất chuyển hóa thứ cấp #sinh tổng hợp #phân tích LCMS #an toàn thực phẩm

Tài liệu tham khảo

Lee CL, Pan TM. Development of Monascus fermentation technology for high hypolipidemic effect. Appl Microbiol Biotechnol. 2012;94:1449–59.

Wang TH, Lin TF. Monascus rice products. Adv Food Nutr Res. 2007;53:123–59.

Yasuda M, Tachibana S, Kuba-Miyara M. Biochemical aspects of red koji and tofuyo prepared using Monascus fungi. Appl Microbiol Biotechnol. 2012;96:49–60.

Gao JM, Yang SX, Qin JC. Azaphilones: chemistry and biology. Chem Rev. 2013;113:4755–811.

Mostafa ME, Abbady MS. Secondary Metabolites and Bioactivity of the Monascus Pigments Review Article. Biotechnol Biochem. 2014;9(1):1–13.

Pastrana L, Blanc PJ, Santerre AL, Loret MO, Goma G. Production of red pigments by Monascus ruber in synthetic media with a strictly controlled nitrogen source. Process Biochem. 1995;30:333–41.

Wanping C, Feng Y, Molnár I, Chen F. Nature and nurture: Confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Nat Prod Rep. 2019;36(4):561–72.

Mapari SAS, Meyer AS, Thrane U, Frisvad JC. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Factories. 2009;8:24.

Jens C. Frisvad, Neriman Yilmaz, Ulf Thrane, Kasper Bøwig Rasmussen, Jos Houbraken, Robert A. Samson, Scott E. Baker, (2013) Talaromyces atroroseus, a New Species Efficiently Producing Industrially Relevant Red Pigments. PLoS One 8 (12):e84102.

Kalaivani M, Sabitha R, Kalaiselvan V, Rajasekaran A. Health benefits and clinical impact of major nutrient, red yeast Rice: a review. Food Bioprocess Technol. 2010;3:333–9.

Yu X, Wu H, Zhang J. Effect of Monascus as a nitrite substitute on color, lipid oxidation, and proteolysis of fermented meat mince. Food Sci Biotechnol. 2015;24:575–81.

Yong Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep. 2015;5:8331.1–9.

Gerards MC, Terlou RJ, Yu H, Koks CHW, Gerdes VEA. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain: a systematic review and meta-analysis. Atherosclerosis. 2015;240:415–23.

Liang B, Du XJ, Li P, Sun CC, Wang S. Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Front Microbiol. 2018;9:1374.1–11.

Carvalho JC, Pandey A, Babitha S, Soccol CR. Production of Monascus biopigments: an overview. Agro Food Ind Hi Tech. 2003;14:37–42.

Nejati P, Nosrati AC, Bayat M, Azar OL. An investigation on measurement means of Citrinin toxin quantity by toxigenic Aspergillus species in biomass, using ELISA. Int J Adv Biol Biomed Res. 2014;2:2466–71.

Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnar I, Li M, Shao Y, Chen F. Orange, red yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci. 2017;8:4917–25.

Woo PCY, Lam CW, Tam EWT, Lee KC, Yung KKY, Leung CKF, Sze KH, Lau SKP, Yuen KYY. The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei. Sci Rep. 2014;4:6728.1–8.

Campbell CD, Vederas JC. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers. 2010;93(9):755–63.

Zhang C, Liang J, Yang L, Sun B, Wang C. De Novo RNA Sequencing and Transcriptome Analysis of Monascus purpureus and Analysis of Key Genes Involved in Monacolin K Biosynthesis. PLoS One. 2017;12(1):e0170149.

Osmanova N, Schultze W, Ayoub N. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev. 2010;9:315–42.

Feng Y, Chen W, Chen F. A Monascus pilosus MS-1 strain with high-yield monacolin K but citrinin. Food Sci Biotechnol. 2016;25:1115–22.

Juzlova P, Martinkova L, Kren V. Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol. 1996;16:163–70.

Komagata D, Shimada H, Murakawa S. Biosynthesis of monacolins: conversion of monacolin to monacolin J by a monooxygenase of Monascus ruber. J Antibiotics. 1988;42:407–12.

Zhang Z, Ali Z, Khan SI, Khan IA. Cytotoxic monacolins from red yeast rice, a Chinese medicine and food. Food Chem. 2016;202:262–8.

Hsu YW, Hsu LC, Liang YH, Kuo YH, Pan TM. Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J Agric Food Chem. 2010;58:8211–6.

Floudas D, Binder M, Riley R, Barry K, Blanchette RA, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Sci. 2008;336:1715–9.

Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol I. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res. 2017;27:768–77.

Kono I, Himeno K. Antimicrobial activity of Monascus pilosus IFO 4520 against contaminant of Koji. Biosci Biotechnol Biochem. 1999;63:1494–6.

Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Copper R, Chang M. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem. 2000;48:5220–5.

Blin K, et al. AntiSMASH 4.0 - improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017. https://doi.org/10.1093/nar/gkx319.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J, Miller V, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, et al. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2006;35(Database issue):D5–12.

Kovalchuk A, Driessen AJM. Phylogenetic analysis of fungal ABC transporters. BMC Genomics. 2010;11:177.1–21.

Von Dohren H. A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet Biol. 2009;46:S45–52.

Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol. 2013;97:6337–45.

Barbosa RN, Leong SL, Vinnere-Pettersson O, Souza-Motta CM, Frisvad JC, Samson RA, Oliveir NT, Houbraken J. Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees. Stud Mycol. 2017;86:29–51.

Moussa LA, Abdel Azeiz AZ. Effect of media composition on citrinin and bio-pigments production by Monascus ruber. J Appl Biol Biotechnol. 2017;5:104–9.

Hajjaj H, Klaébé A, Loret MO, Goma G, Philippe J. Blanc, and Jean François. Appl Environ Microbiol. 1999;65:311–4.

Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol. 2005;71:3453–7.

Chen YP, Tseng CP, Chien IL, Wang WY, Liaw LL, Yuan GF. Exploring the distribution of citrinin biosynthesis related genes among Monascus species. J Agric Food Chem. 2008;56:11767–72.

Endo A, Monacolin K. A new hypocholestrerolemic agent produced by a Monascus species. J Antibiot. 1979;32:852–4.

Hendrickson L, Davis CR, Roach C, Nguyen DK, Aldrich T, McAda PC, Reeves CD. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem Biol. 1999;6:429–39.

Kwon HJ, Balakrishnan B, Kim YK. Some Monascus purpureus genomes lack the monacolin K biosynthesis locus. J Appl Biol Chem. 2016;59:45–7.

Rasheva TV, Nedeva TS, Hallet JN, Kujumdzieva AV. Characterization of a non-pigment producing Monascuss purpureus mutant strain. Antonie Van Leeuwenhoek. 2003;83:333–40.

Wong HC, Bau YS. Pigmentation and antibacterial activity of fast neutron- and X-ray-induced strains of Monascus purpureus went. Plant Physiol. 1977;60:578–81.

Houng GPARK, Elena KSTAMENOVA, Shung-Chang JONG. Phylogenetic relationships of Monascus species inferred from the ITS and the partial β-tubulin gene. Bot Bull Acad Sin. 2004;45:325.

Ostry V, Malir F, Ruprich J. Producers and important dietary sources of ochratoxin a and citrinin. Toxin. 2013;5:1574–86.

Moharram AM, Mostafa ME, Ismail MA. Chemical profile of Monascus ruber strains. Food Technol Biotechnol. 2012;30:490–9.

Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, et al. Comparative pathogenomics reaveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog. 2012;8:e1002952.

Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, et al. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006;38:953–6.

Garcia-Vallve S, Romeu A, Palau J. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol. 2000;17:352–461.

Wisecaver JH, Slot JC, Rokas A. The evolution of fungal metabolic pathways. PLoS One. 2014;10:e1004816.1–11.

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015; https://doi.org/10.1038/nmeth.3176.

Pundir S, Martin MJ, O’Donovan C. UniProt protein knowledgebase. In: Wu C, Arighi C, Ross K, editors. Protein bioinformatics. Methods in molecular biology, vol. 1558. New York: Humana Press; 2017.

Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39(suppl_2):W339–46.