Distributions and determinants of urinary biomarkers of organophosphate pesticide exposure in a prospective Spanish birth cohort study
Tóm tắt
Prenatal exposure to organophosphate pesticides (OPs) has been associated with impaired child development. Pesticide exposure determinants need to be studied in order to identify sources and pathways of pesticide exposure. The aim of this paper is to describe prenatal exposure to OPs and evaluate the associated factors in pregnant women. The study population consisted of pregnant women (n = 573) who participated in the INMA birth cohort study in Valencia (Spain, 2003–2006). OP metabolites were analyzed in maternal urine at the 32nd week of gestation using a liquid chromatography-high resolution mass spectrometry method. The analysis included non-specific (diethyl phosphate [DEP], diethyl thiophosphate [DETP], dimethyl thiophosphate [DMTP], dimethyl dithiophosphate [DMDTP]) and specific metabolites (2-diethylamino-6-methyl-4-pyrimidinol [DEAMPY], 2-isopropyl-4-methyl-6-hydroxypyrimidine [IMPY], para-nitrophenol [PNP], and 3,5,6-trichloro-2-pyridinol [TCPY]). Information about the sociodemographic, environmental, and dietary characteristics was obtained by questionnaire. The association between log-transformed OPs and covariates was analyzed using multivariable interval censored regression. The detection frequencies were low, DMTP and TCPY being the most frequently detected metabolites (53.8% and 39.1%, respectively). All the OP metabolites were positively associated with maternal intake of fruits and vegetables. Other maternal characteristics related to the OPs were body mass index (BMI) before pregnancy and smoking habit during pregnancy. Women with lower BMI and those who did not smoke presented higher OP concentrations. Moreover, mothers who had a yard or garden with plants at home or who lived in an urban area were also more exposed to OPs. The OP detection frequencies and the concentrations observed in our study population were low, compared with most of the previously published studies. Given the high vulnerability of the fetus to neurotoxicant exposure, further research on the determinants of the body burden of OPs during pregnancy would be necessary. The knowledge gained from such studies would enhance the effectiveness of public health control and future recommendations in order to reduce the risk to both the health of pregnant women and the health and development of their children.
Tài liệu tham khảo
European Crop Protection. Industry Statistics 2001–2010. 2010. http://www.ecpa.eu/industry-statistics. Accessed 12 May 2016.
Asociación de empresarios para la producción de las plantas (AEPLA). Report 2009. 2009. http://www.eumedia.es/portales/files/documentos/AEPLA2009.pdf. Accessed 15 Apr 2016.
Spanish Ministry of Agriculture F and E. Annual statistics about the pesticide use in the agriculture. 2013. http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/estadisticas-medios-produccion/fitosanitarios.aspx. Accessed 20 May 2016.
Ccanccapa A, Masia A, Andreu V, Pico Y. Spatio-temporal patterns of pesticide residues in the Turia and Jucar rivers (Spain). Sci Total Environ. 2016;540:200–10.
Moreno MJ, Melia LA, Oltra Moscardo MT, Jimenez PR. Current situation in Spain of aerosol insect sprays registered for household use by the environmental health authorities. Rev EspSalud Publica. 2003;77:383–91.
Sociedad Española de Sanidad Ambiental. Study of the use of organophosphate insecticide Chlorpyrifos in urban spaces. Rev Salud Ambient. 2009;9(Supl 1):1–20.
Whyatt RM, Barr DB, Camann DE, Kinney PL, Barr JR, Andrews HF, et al. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ Health Perspect. 2003;111:749–56.
Berkowitz GS, Obel J, Deych E, Lapinski R, Godbold J, Liu Z, et al. Exposure to indoor pesticides during pregnancy in a multiethnic, urban cohort. Environ Health Perspect. 2003;111:79–84.
Bradman A, Eskenazi B, Barr DB, Bravo R, Castorina R, Chevrier J, et al. Organophosphate urinary metabolite levels during pregnancy and after delivery in women living in an agricultural community. Environ Health Perspect. 2005;113:1802–7.
Roberts JR, Karr CJ, Council On Environmental Health. Pesticide exposure in children. Pediatrics. 2012;130:e1765–88.
Selevan SG, Kimmel CA, Mendola P. IDentifying critical windows of exposure for children’s health. EnvironHealth Perspect. 2000;108 Suppl 3:451–455.
Gonzalez-Alzaga B, Lacasana M, Guilar-Garduno C, Rodriguez-Barranco M, Ballester F, Rebagliato M, et al. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett. 2014;230:104–21.
Eskenazi B, Harley K, Bradman A, Weltzien E, Jewell NP, Barr DB, et al. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect. 2004;112:1116–24.
Wang P, Tian Y, Wang XJ, Gao Y, Shi R, Wang GQ, et al. Organophosphate pesticide exposure and perinatal outcomes in shanghai, China. Environ Int. 2012;42:100–4.
Rauch SA, Braun JM, Barr DB, Calafat AM, Khoury J, Montesano AM, et al. Associations of prenatal exposure to organophosphate pesticide metabolites with gestational age and birth weight. Environ Health Perspect. 2012;120:1055–60.
Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, Garfinkel R, et al. Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect. 2004;112:1125–32.
Harari R, Julvez J, Murata K, Barr D, Bellinger DC, Debes F, et al. Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environ Health Perspect. 2010;118:890–6.
Raanan R, Balmes JR, Harley KG, Gunier RB, Magzamen S, Bradman A, et al. Decreased lung function in 7-year-old children with early-life organophosphate exposure. Thorax. 2016;71:148–53.
Bost-Legrand A, Warembourg C, Massart C, Chevrier C, Bonvallot N, Monfort C, et al. Prenatal exposure to persistent organic pollutants and organophosphate pesticides, and markers of glucose metabolism at birth. Environ Res. 2016;146:207–17.
Slotkin TA. Does early-life exposure to organophosphate insecticides lead to prediabetes and obesity? ReprodToxicol. 2011;31:297–301.
Yolton K, Xu Y, Sucharew H, Succop P, Altaye M, Popelar A, et al. Impact of low-level gestational exposure to organophosphate pesticides on neurobehavior in early infancy: a prospective study. Environ Health. 2013;12:79.
Colapinto CK, Arbuckle TE, Dubois L, Fraser W. Tea consumption in pregnancy as a predictor of pesticide exposure and adverse birth outcomes: the MIREC study. Environ Res. 2015;142:77–83.
Lewis RC, Cantonwine DE, Del Toro LV, Calafat AM, Valentin-Blasini L, Davis MD, et al. Distribution and determinants of urinary biomarkers of exposure to organophosphate insecticides in Puerto Rican pregnant women. Sci Total Environ. 2015;512–513:337–44.
Sokoloff K, Fraser W, Arbuckle TE, Fisher M, Gaudreau E, LeBlanc A, et al. Determinants of urinary concentrations of dialkyl phosphates among pregnant women in Canada - results from the MIREC study. Environ Int. 2016;94:133–40.
Guxens M, Ballester F, Espada M, Fernandez MF, Grimalt JO, Ibarluzea J, et al. Cohort profile: the INMA--INfancia y Medio Ambiente--(environment and childhood) project. Int J Epidemiol. 2012;41:930–40.
Roca M, Leon N, Pastor A, Yusa V. Comprehensive analytical strategy for biomonitoring of pesticides in urine by liquid chromatography-orbitrap high resolution masss pectrometry. J Chromatogr A. 2014;1374:66–76.
Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 2003;86:412–31.
Domingo-Salvany A, Regidor E, Alonso J, Varez-Dardet C. Proposal for a social class measure. Working Group of the Spanish Society of epidemiology and the Spanish Society of Family and Community Medicine. Aten Primaria. 2000;25:350–63.
Vioque J, Navarrete-Munoz EM, Gimenez-Monzo D, Garcia-de-la-Hera M, Granado F, Young IS, et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr J. 2013;12:26.
Newman MC, Dixon PM, Looney BB, Pinder JE. Estimating mean and variance for environmental samples with below detection limit observations. Water Resources Butlletin. 1989;25:905–16.
Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, et al. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ Health Perspect. 2004;112:1691–6.
Castorina R, Bradman A, Fenster L, Barr DB, Bravo R, Vedar MG, et al. Comparison of current-use pesticide and other toxicant urinary metabolite levels among pregnant women in the CHAMACOS cohort and NHANES. Environ Health Perspect. 2010;118:856–63.
Castorina R, Bradman A, McKone TE, Barr DB, Harnly ME, Eskenazi B. Cumulative organophosphate pesticide exposure and risk assessment among pregnant women living in an agricultural community: a case study from the CHAMACOS cohort. Environ Health Perspect. 2003;111:1640–8.
Ye X, Pierik FH, Angerer J, Meltzer HM, Jaddoe VW, Tiemeier H, et al. Levels of metabolites of organophosphate pesticides, phthalates, and bisphenol a in pooled urine specimens from pregnant women participating in the Norwegian mother and child cohort study (MoBa). Int J Hyg Environ Health. 2009;212:481–91.
Fortenberry GZ, Meeker JD, Sanchez BN, Barr DB, Panuwet P, Bellinger D, et al. Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: distribution, temporal variability, and relationship with child attention and hyperactivity. Int J Hyg Environ Health. 2014;217:405–12.
Forde MS, Robertson L, Laouan Sidi EA, Cote S, Gaudreau E, Drescher O, et al. Evaluation of exposure to organophosphate, carbamate, phenoxy acid, and chlorophenol pesticides in pregnant women from 10 Caribbean countries. Environ Sci Process Impacts. 2015;17:1661–71.
Gonzalez-Alzaga B, Hernandez AF, Rodriguez-Barranco M, Gomez I, Guilar-Garduno C, Lopez-Flores I, et al. Pre- and postnatal exposures to pesticides and neurodevelopmental effects in children living in agricultural communities from south-eastern Spain. Environ Int. 2015;85:229–37.
Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect. 2011;119:1189–95.
Hoppin JA, Ulmer R, Calafat AM, Barr DB, Baker SV, Meltzer HM, et al. Impact of urine preservation methods and duration of storage on measured levels of environmental contaminants. J Expo Sci Environ Epidemiol. 2006;16:39–48.
Flaskos J. The developmental neurotoxicity of organophosphorus insecticides: a direct role for the oxon metabolites. Toxicol Lett. 2012;209:86–93.
Chen L, Zhao T, Pan C, Ross JH, Krieger RI. Preformed biomarkers including dialkylphosphates (DAPs) in produce may confound biomonitoring in pesticide exposure and risk assessment. J Agric Food Chem. 2012;60:9342–51.
Quirós-Alcalá L, Bradman A, Smith K, Weerasekera G, Odetokun M, Barr DB, et al. Organophosphorous pesticide breakdown products in house dust and children’s urine. J Expo Sci Environ Epidemiol. 2012;22:559–68.
Lu C, Bravo R, Caltabiano LM, Irish RM, Weerasekera G, Barr DB. The presence of dialkylphosphates in fresh fruit juices: implication for organophosphorus pesticide exposure and risk assessments. J Toxicol Environ Health Part A. 2005;68:209–27.
Bravo R, Caltabiano LM, Weerasekera G, Whitehead RD, Fernandez C, Needham LL, et al. Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. J Expo Anal Environ Epidemiol. 2004;14:249–59.