Phân bố thực vật rừng ngập mặn theo gradient ngập nước, photpho và độ mặn trên bán đảo Bragança ở miền Bắc Brazil

Springer Science and Business Media LLC - Tập 370 - Trang 393-406 - 2013
Cleise Cordeiro Da Cruz1, Ursula Neira Mendoza2,3, Joaquim Barbosa Queiroz4, José Francisco Berrêdo5, Salustiano Vilar Da Costa Neto6, Rubén Jose Lara7,8
1Institute of Geosciences, Federal University of Pará, Belém, Brazil
2Department of Environmental Geochemistry, Fluminense Federal University, Rio de Janeiro, Brazil
3Departamento de Geoquímica Ambiental, Universidade Federal Fluminense, Instituto de Química, Niterói, Brazil
4Institute for Statistics and Mathematics, Federal University of Pará, Belém, Brazil
5Department of Earth Sciences and Ecology, Goeldi Museum, Belém, Brazil
6Amapá State Institute for Scientific and Technological Research, Macapá, Brazil
7Zentrum für Marine Tropenökologie, Bremen, Germany
8Argentine Institute of Oceanography, Bahía Blanca, Argentina

Tóm tắt

Bán đảo Bragança, nằm ở miền bắc Brazil, có đặc điểm là có các thủy triều lớn (4 m) và các điều kiện edaphic cụ thể, điều hướng sự phát triển của rừng ngập mặn địa phương. Nghiên cứu này, được tiến hành trong mùa khô, đã đánh giá các mẫu không gian của các loài Rhizophora mangle và Avicennia germinans theo gradient ngập nước. Dọc theo một đoạn transect dài 700 m, các phép đo về kết cấu rừng, độ ẩm của đất, độ mặn của nước trong khe hở, photpho có thể chiết xuất (extr.-P) trong trầm tích và photpho trong lá (leaf-P) đã được thực hiện. Loài A. germinans (100 %) xuất hiện trong khu vực triều cao (HI). A. germinans (59 %) và R. mangle (41 %) đồng xuất hiện trong khu vực triều giữa (MI), trong khi R. mangle (58 %) chiếm ưu thế trong khu vực triều thấp (LI), tiếp theo là A. germinans (37 %) và Laguncularia racemosa (5 %). Phân tích hiệp biến (ANCOVA) chỉ ra rằng độ mặn và độ ẩm đất có sự khác biệt đáng kể giữa các rừng ngập mặn, nhưng không tương quan với tần suất ngập nước (IF). Các giá trị trung bình của extr.-P cũng khác biệt đáng kể trong các rừng ngập mặn và tương quan với IF và leaf-P. Tần suất ngập nước, sự sẵn có của P trong các trầm tích, photpho trong lá và độ mặn giữa các khe đều là những yếu tố quan trọng góp phần vào sự phân bố của các loài cây ngập mặn A. germinans và R. mangle trên bán đảo Bragança.

Từ khóa

#rừng ngập mặn #Bragança #photpho #độ mặn #gradient ngập nước

Tài liệu tham khảo

Ball MC (1988) Ecophysiology of mangroves. Trees 2:129–142 Behling H, da Costa ML (2004) Mineralogy, geochemistry, and palynology of modern and late Tertiary mangrove deposits in the Barreiras Formation of Mosqueiro Island, northeastem Para state, eastern Amazonia. J S Am Earth Sci 17:285–295 Berrêdo JF, da Costa ML, Vilhena MPSP, Santos JT (2008) Mineralogia e geoquímica de sedimentos de manguezais da costa amazônica: o exemplo do estuário do rio Marapanim (Pará). Rev Bras Geociênc 1:24–25 Boto KG, Wellington JT (1983) Phosphorus and nitrogen nutritional status of a Northern Australian mangrove forest. Mar Ecol Prog Ser 11:63–69 Boto KG, Wellington JT (1984) Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries 7:61–69 Chen R, Twilley RR (1999) Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22:955–970 Cohen MCL, Lara R (2003) Temporal changes of mangroves vegetation boundaries in Amazonia: application of GIS and remote sensing techniques. Wetl Ecol Manag 11:223–231 Cohen MCL, Lara RJ, Szlafsztein CF, Dittmar T (2001) Digital elevation model applied to mangrove coast analysis, Amazon region, Brazil. J Int Environ Creat 4:1–8 Cohen MCL, Souza Filho PWM, Lara RJ, Behling H, Angulo RJ (2005) A model of Holocene mangrove development and relative sea-level changes on Bragança Peninsula (Northern Brazil). Wetl Ecol Manag 13:433–443 Costa ML (1991) Aspectos geológicos dos lateritos da Amazônia. Rev Bras Geociênc 21:146–160 Costa ML, Behling H, Berrêdo JF, do Carmo MS, Siqueira NVM (2004) Mineralogical, geochemical and palynological studies of late Holocene mangrove sediments from Northeastern Pará State, Brazil. Rev Bras Geociênc 34:479–488 Cuzzuol GRF, Campos A (2001) Aspectos nutricionais na vegetação de manguezal do estuário do Rio Mucuri, Bahia. Rev Bras Bot 2:227–234 da Cruz CC (2009) Biogeoquímica dos sedimentos lamosos e sua influência no padrão de distribuição da vegetação, no manguezal de Bragança, NE do Pará. Thesis. Instituto de Geociências, Universidade Federal do Pará, Brasil De Leeuw J, Van den Dool A, De Munck W, Nieuwenhuize J, Beeftink WG (1991) Factors influencing the soil salinity regime along intertidal gradient. Estuarine Coastal Shelf Sci 32:87–97 Ensminger I (1996) Hydrologische veränderungen am Canal Clarín und ihre Bedeutung für die Regeneration salzgeschädigter Mangrove. Dissertation, Justus-Liebig-University Gießen, Germany Escudero A, Del Arco JM, Sanz IC, Ayala J (1999) Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:80–87 Fabre A, Fromard FR, Trichon V (1999) Fractionation of phosphate in sediments of four representative mangroves stages (French Guiana). Hydrobiologia 392:13–19 Feller IC (1995) Effects on nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65:477–505 Feller IC, McKee KL, Whigham DF, O’Neill JP (2003) Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62:145–175 Feller IC, Whigham DF, O’Neil JP, McKee KL (1999) Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80:2193–2205 Fenchel T, King GM, Blackburn TH (1998) Bacterial biogeochemistry: the ecophysiology of mineral cycling. 2nd Edn. Academic Press, New York Grasshoff K, Ehrhardt M, Kremmling K (1983) Methods of seawater analysis. Verlag Chemie, Nürnberg, pp 403 Hesse PR (1957) The effect of colloidal organic matter on the precipitation of barium sulphate and a modified method for determining soluble sulphate in soils. Analyst 82:710–712 Hogartth P (1999) The Biology of Mangroves. Oxford University Press, New York INMET—Instituto Nacional de Metereologia (2009) Recovered from the Internet www.inmet.gov.br. Accessed 10 January 2010 Johnson RA, Wichern DW (1999) Applied multivariate statistical analysis, 4th edn. Prentice Hall, Upper Saddle River Jonasson S, Chapin FS III (1985) Significance of sequential leaf development for nutrient balance on the cotton sedge, Eriophorumvaginatum L. Oecologia (Berlin) 67:511–518 Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219 Lamb L, Muller E, Fromard F (2008) Mangrove trees growing in a very saline condition but not using seawater. Rapid Commun Mass Spectrom 18:2835–2843. doi:10.1002/rcm.3676 Lara RJ, Dittmar T (1999) Nutrient dynamics in a mangrove creek (North Brazil) during the dry season. Mangrove Salt Marshes 3:185–195 Lara RJ, Cohen M, Szlafsztein C (2010) Drivers of temporal changes in mangrove vegetation boundaries and consequences for land use. In: Saint Paul U, Schneider H (Org). Mangrove dynamics and management in North Brazil, 1ªedn. Springer-Verlag, Berlin 11: 127–136 Leeg JO, Black CA (1995) Determination of organic phosphorus in soils: ignition method. Soil Sci Soc Proc 19:139–143 Lin G, Stemberg LDSL (1992) Comparative study of water uptake and photosynthetic gas exchange between scrub and fringe red mangroves, Rhizophora mangle L. Oecologia 90:399–403 López-Hoffman L, Anten NPR, Martinez-Ramos M, Ackerly DD (2007) Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 150:545–556 López-Hoffman L, DeNoyer JL, Monroe I, Shaftel R, Anten NPR, Martinez-Ramos M, Ackerly DD (2006) Mangrove seedling net photosynthesis, growth, and survivorship are interactively affected by salinity and light. Biotropica 38:606–616 Lovelock CE, Feller IC, McKee KL, Thomilson R (2005) Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribb J Sci 41:456–464 Lovelock CE, Ball CM, Choat B, Engelbrecht BMJ, Holbrook M, Feller IC (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ 29:793–802 Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5:39–64 Marchand C, Baltzer F, Lallier-Vergès E, Albéric P (2004) Pore-water chemistry in mangrove sediments: relationship with species composition and developmental stages (French Guiana). Mar Geol 208:361–381 Marschner H (1995) Mineral nutrition of higher plants. Academic, London Martins FR (1991) Estrutura de uma Floresta Mesófila. Unicamp-SP, Brasil Matthijs S, Tack J, van Speybroeck D, Koedam N (1999) Mangrove species zonation and soil redox state, sulphide concentration and salinity in Gazi Bay (Kenya), a preliminary study. Mangrove Salt Marshes 3:243–249 McKee KL (1993) Soil physicochemical patterns and mangrove species distribution—reciprocal effects? J Ecol 81:477–487 McKee KL (1995) Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physic-chemical factors. Oecologia 101:448–460 McKee KL (1996) Growth and physiological responses of neotropical mangrove seedling to root zone hypoxia. Tree Physiol 16:883–889 McKee KL, Feller IC, Popp M, Wanek W (2002) Mangrove isotopic fractionation (δ15N and δ13C) across nitrogen versus phosphorus limitation gradient. Ecology 83:1065–1075 Medina E (1984) Nutrient balance and physiological processes at the leaf level, pp 139–154. In: Medina E, Mooney HA, Vázquez-Yánez C (eds) Physiological ecology of plants of the wet tropics. Proceedings of an International Symposium held in Oxatepec and Los Tuxtlas, Mexico. June 29 to July 6, 1983 Medina E, Francisco M (1997) Osmalality and δ13C of leaf tissues of mangrove species from environments of contrasting rainfall and salinity. Estuarine Coastal Shelf Sci 45:337–344 Medina E, Giarrizzo T, Menezes M, Carvalho LM, Carvalho EA, Peres A, Silva B, Vilhena R, Reise A, Braga FC (2001) Mangal communities of the “Salgado Paraense”: ecological heterogeneity along the Bragança Peninsula assessed through soil and leaf analyses. Amazoniana 16:397–416 Mehlig U (2006) Phenology of the red mangrove, Rhizophora mangle L., in the Caeté Estuary, Para, equatorial Brazil. Aquat Bot 84:158–164 Mendoza U (2007) Dynamics of phosphorus and sulphur in a mangrove forest in Bragança, North Brazil. Dissertation, Center of Marine Tropical Ecology, Bremen University, Germany Mendoza UN, da Cruz CC, Menezes MP, Lara RJ (2012) Flooding effects on phosphorus dynamics in an Amazonian mangrove, northern Brazil. Plant Soil 353:107–121 Mueller-Dembois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley and Sons, New York Naidoo G (1986) Response of the mangrove Rhizophoramucronata to high salinities and low osmotic potentials. S Afr J Bot 2:124–128 Naidoo G, Rogalla H, von Willet DJ (1998) Field measurements of gas exchange in Avicennia marina and Bruguiera gymnorrhiza. Mangrove Salt Marshes 2:99–107 Nickerson NH, Thibodeau FR (1985) Association between porewater sulphide concentrations and the distribution of mangroves. Biogeochemistry 1:183–192 Ponnamperuma FN (1972) The chemistry of submerged soils. In: Brady NC (ed) Advances in agronomy. American Society of Agronomy, New York, pp 29–88 Prasad MBK, Ramanathan AL (2010) Characterization of phosphorus fractions in the sediments of a tropical intertidal mangrove ecosystem. Wetl Ecol Manag 18:165–167 Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangrove. Tree Physiol 30:1148–1160 Reise A, Schories D, and Medina E (2010) Soil–vegetation nutrient relations: In: Saint Paul U, Schneider H (Org). Mangrove dynamics and management in North Brazil, 1ªedn. Springer-Verlag, Berlin 11: 91–107 Satyanarayana B, Raman AV, Dehairs F, Kalayati C, Chandramchan P (2001) Mangrove floristic and zonation patterns of Coringa Kakinada bay, east Coast of India. Wetl Ecol Manag 1:25–37 Schaeffer-Novelli Y, Cintrón GM (1986) Guia pata estudos de áreas de manguezal: estrutura, função e flora. Caribbean Ecological Research São Paulo, Brasil Schmitt BB (2006) Characterization of organic nitrogen compounds in sediment and leaves of a mangrove ecosystem in North Brazil. Dissertation. Center of Marine Tropical Ecology, Bremen University, Germany Schwendenmann L (1998) Tidal and seasonal variations of soil and water properties in a Brazilian mangrove ecosystem. Dissertation. University of Karlsruhe Sherman RE, Fahey TJ, Howarth RW (1998) Soil–plant interaction in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115:553–563 Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398 Silva CAR, Sampaio LS (1998) Speciation of phosphorus in a tidal floodplain forest in the Amazon estuary. Mangrove Salt Marshes 2:51–57 Sobrado MA (2000) Relation of water transport to leaf gas exchange properties in three mangrove species. Trees 14:258–262 Son Y, Lee IK, Ryu SR (2000) Nitrogen and phosphorus dynamics in foliage and twig of pitch pine and Japanese larch plantations in relation to fertilization. J Plant Nutr 23:697–710 Souza Filho PWM, El-Robrini M (2000) Geomorphology of the Bragança Coastal Zone, Northeastern Pará State. Rev Bras Geocienc 30:522–526 Thibodeau FR, Nickerson NH (1986) Differential oxidation of mangrove substrate by Avicenniagerminans and Rhizophora mangle. Am J Bot 73:512–516 Tomlinson PB (1986) The botany of mangrove. Cambridge University Press, UK Twilley RR, Chen R (1998) A water budget and hydrology model of a basin mangrove forest in Rookery Bay. Fla Mar Freshw Res 4:309–323 Ukpong IE (2000) Ecological classification of Nigerian mangroves using soil nutrient gradient analysis. Wetl Ecol Manag 8:263–272 Vince SW, Snow AA (1984) Plant zonation in Alaskan salt marsh. I: Distribution, abundance and environmental factors. J Ecol 72:651–667 Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572 Yuan ZY, Chen YH (2009) Global-scale patterns of nutrients resorption associated with latitude, temperature and precipitation. Glob Ecol Biogeogr 18:11–18