Phân bố kim loại trong vùng vadose của đồng bằng phù sa tại một con suối khai thác: Trường hợp Beal Wadi (Khu khai thác Cartagena–La Union, Đông Nam Tây Ban Nha)

Water, Air, and Soil Pollution - Tập 221 - Trang 45-61 - 2011
Oscar Gonzalez-Fernandez1, Luis Rivero2, Ignacio Queralt1, Manuel Viladevall2
1Laboratory of X-Ray Analytical Applications, Institute of Earth Sciences “Jaume Almera”, CSIC, Barcelona, Spain
2Geochemistry, Petrology and Geological Exploration Department, Faculty of Geology, University of Barcelona, Barcelona, Spain

Tóm tắt

Việc đánh giá sự phân tán của kim loại trong các khu vực khai thác bị ô nhiễm là một vấn đề rất phức tạp, thường cần dữ liệu từ nhiều kỹ thuật phân tích trong một phương pháp tiếp cận kết hợp. Công trình hiện tại tập trung vào tác động của hoạt động khai thác đến trầm tích đồng bằng phù sa vùng thấp từ một con suối thoáng qua, vai trò của chúng như nguồn hoặc bể chứa ô nhiễm và sự phân bố không gian của kim loại trong khu vực. Sự phân bố sâu của các nguyên tố (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, S, Ti và Zn) đến từ hoạt động khai thác đã được điều tra bằng cách sử dụng kỹ thuật huỳnh quang tia X và hình thức khoáng vật của chúng bằng phương pháp nhiễu xạ tia X. Một cuộc khảo sát điện trở 2 chiều đã được thực hiện xuyên suối để giải thích các mối quan hệ tiềm năng giữa các tham số hóa học, khoáng vật học và địa vật lý. Việc ứng dụng quy trình rửa (thử nghiệm DIN 38414-S4) cho phép chúng tôi biết được mối nguy tiềm ẩn của kim loại nặng trong trầm tích và khả năng di động của chúng khi thay đổi điều kiện redox. Từ các kết quả thu được, quá trình redox của lưu huỳnh và sự hiện diện của cacbonat ảnh hưởng đến phân bố kim loại dọc theo hồ sơ. Trong công trình hiện tại, sự lắng đọng của cacbonat dường như là quá trình quan trọng nhất, đặc biệt đối với các nguyên tố như Zn và Mn. Sự lắng đọng thứ cấp của sulfide cho phép giữ lại các kim loại tại các mức giàu lưu huỳnh.

Từ khóa

#phân bố kim loại #vùng vadose #đồng bằng phù sa #ô nhiễm khai thác #kỹ thuật huỳnh quang tia X #nhiễu xạ tia X #khảo sát điện trở #kim loại nặng #điều kiện redox

Tài liệu tham khảo

Alloway, B.J. (Ed.) (1995). Heavy metals in soils. 2nd Ed. Blackie Academic and Professional. 368 pp. Alvarez-Rogel, J., Jimenez-Carceles, F. J., Roca, M. J., & Ortiz, R. (2007). Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuarine, Coastal and Shelf Science, 73(3–4), 510–526. Atekwana, E. A., Sauck, W. A., & Werkema, D. D., Jr. (2000). Investigations of geoelectrical signatures at a hydrocarbon contaminated site. Journal of Applied Geophysics, 44, 167–180. Bargar, J. R., Fuller, C. C., Marcus, M. A., Brearley, A. J., Perez de la Rosa, M., Webb, S. M., et al. (2009). Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ. Geochimica et Cosmochimica Acta, 73(4), 889–910. Baron, D., & Palmer, C. D. (1996). Solubility of jarosite at 4–35°C. Geochimica et Cosmochimica Acta, 60(2), 185–195. Berthold, S., Bentley, L. R., & Hayashi, M. (2004). Integrated hydrogeological and geophysical study of depression focused groundwater recharge in the Canadian prairies. Water Resources Research, 40(6), W065051–W0650514. Brookins, D.G. (1987). Eh-pH diagrams for geochemistry. Springer. 176 pp. Buhrke, V. E., Jenkins, R., & Smith, D.-K. (1998). A Practical Guide for the Preparation of Specimens for X-Ray Fluorescence and X-Ray Diffraction Analysis (p. 345). New York: Wiley-VCH. Carroll, S. A., O’Day, P. A., & Piechowski, M. (1998). Rock–water interactions controlling zinc, cadmium and lead concentrations in surface waters and sediments, U.S. Tri-state Mining District. 2. Geochemical interpretation. Environmental Science & Technology, 32(7), 956–965. DIN 38414-S4. (1984). Schlamm und Sedimente, Bestimmung der Eluierbarkeit mit Wasser. Berlin: DIN Deutsches Institut für Normung. Dold, B. (1999). Mineralogical and geochemical changes of copper flotation tailings in relation to their original composition and climatic setting: Implications for acid mine drainage and element mobility. PhD Thesis. University of Geneve. 230 p. Drahor, M. G., Göktürkler, G., Berge, M. A., & Özgur Kurtulmus, T. (2006). Application of electrical resistivity tomography technique for investigation of landslides: A case from Turkey. Environmental Geology, 50, 147–155. Drouet, C., Pass, K. L., Baron, D., Draucker, S., & Navrotsky, A. (2004). Thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions. Geochimica et Cosmochimica Acta, 68(10), 2197–2205. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985. Fic, M., & Isenbeck-Schröter, M. (1989). Batch studies for the investigation of the mobility of the heavy metals Cd, Cr, Cu and Zn. Journal of Contaminant Hydrology, 4, 69–78. Fortsner, U. (1989). Contaminated Sediments: Lectures on Environmental Aspects of Particle-Associated Chemicals in Aquatic Systems. New York: Springer. 157 pp. Frau, F., Ardau, C., & Fanfani, L. (2009). Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (south-east Sardinia, Italy). Journal of Geochemical Exploration, 100(2–3), 105–115. Garcia, C. (2004). “Impacto y riesgo ambiental de los residuos minero-metalúrgicos de la sierra minera de Cartagena–La Unión”. Ph D. Thesis. Universidad Politécnica de Cartagena (in Spanish). Garcia, G., Faz, A., & Conesa, H. M. (2003). Selection of autochtonous plant species form SE Spain for soil lead phytoremediation purposes. Water, Air, & Soil Pollution: Focus, 3(3), 243–250. Garcia, G., Manteca, J. I., & Peñas, J. M. (2007). Leaching and transport of Zn through soil profiles in a seasonal river of a mining area in SE Spain. Global NEST Journal, 9(3), 214–223. Geotomo soft,. (2006). Res2dinv software, ver. 3.55.64, http://www.geoelectrical.com Graupner, T., Kassahun, A., Rammlmair, D., Meima, J. A., Kock, D., Furche, M., et al. (2007). Formation of sequences of cemented layers and harpans within sulphide-bearing mine tailings (mine district Freiberg, Germany). Applied Geochemistry, 22, 2486–2508. Gonzalez-Fernandez, O., Queralt, I., Carvalho, M. L., & Garcia, G. (2007). Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF). Nuclear Instruments and Methods in Physics Research B, 262, 81–86. Gonzalez-Fernandez, O., Jurado-Roldan, A. and Queralt, I. (2010a) Geochemical and Mineralogical Features of Overbank and Stream Sediments of the Beal Wadi (Cartagena–La Union Mining District, SE Spain): Relation to Former Lead–Zinc Mining Activities and Its Environmental Risk. Water, Air and Soil Pollution, (early view, doi: 10.1007/s11270-010-0458-1). Gonzalez-Fernandez, O., Queralt, I., Manteca, J.I., Garcia, G., Carvalho, M.L. (2010b) Distribution of metals in soils and plants around mineralizad zones at Cartagena–La Unión mining district (SE, Spain). Environmental Earth Sciences (early view, doi: 10.1007/s12665-010-0796-8). Guo, T., De Laune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23(3), 305–316. Hudson-Edwards, K. A., Schell, C., Macklin, M. G. (1999). Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tino area, southwest Spain. Applied Geochemistry, 14, 1015–1030. INM, (2000). National Meteorology Institute. Meteorological values database. Spanish Ministry of Environment. Jimenez-Carceles, F. J., Alvarez-Rogel, J., & Conesa Alcaraz, H. M. (2008). Trace element concentrations in saltmarsh soils strongly affected by wastes from metal sulphide mining areas. Water, Air, and Soil Pollution, 188(1–4), 283–295. Kempter, H., Görres, M., & Frenzel, B. (1997). Ti and Pb concentrations in rainwater-fed bogs in Europe as indicators of past anthropogenic activities. Water, Air, and Soil Pollution, 100, 367–377. Linares Martinez, F. (2005). Juegos de estrategia y consecuencias inintencionadas: un modelo con resultados perversos de la crisis de la minería de Cartagena–La Unión. Papers Journal, 75, 35–61. Löwner, M. O., Preston, N. J., & Dikau, R. (2005). Reconstruction of a colluvial body using geoelectrical resistivity. Zeitschrift fuÉr Geomorphologie N.F, 49, 225–238. Lowrie, W. (2007). Fundamentals of Geophysics (p. 381). Cambridge: Cambridge University Press. Manteca Martinez, J.I., Perez de Perceval Verde, M.A., Lopez-Morell, M.A. (2005). La industria minera en Murcia durante la época contemporánea. Pp. 123–137. In: Antolinos Marin, J.A., Manteca Martinez J.I. (2005). Patrimonio Minero de la Región de Murcia. Bocamina. 170 pp. Gobierno de la Región de Murcia: Spain. Marin-Guirao, L. (2007). Aproximación ecotoxicológica a la contaminación por metales pesados en la laguna costera del Mar Menor. PhD Thesis. Universidad de Murcia. 190 pp. (In spanish). Margui, E. 2006. Analytical methodologies based on X-ray fluorescence spectrometry (XRF) and inductively couple plasma spectroscopy (ICP) for the assessment of metal dispersal around mining environments. Ph.D. Thesis, Department of Chemistry, University of Girona (Spain). 274 pp. Margui, E., Queralt, I., & Van Grieken, R. (2009). X-ray fluorescence analysis, sample preparation for. In R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation (p. 20). New York: Wiley Interscience. Martín Camino, M. (1996). «Del final de la Edad de Bronce al Mundo Bizantino». In: Tornel Cobacho, C. (coord.). Manual de Historia de Cartagena.Murcia: Universidad de Murcia. (in Spanish). Martinez-Pagan, P. (2006). Aplicación de diferentes técnicas no destructivas de prospección geofísica a problemas relacionados con contaminación ambiental producida por diferentes actividades antrópicas en la región de Murcia. PhD Tesis. Technical Universtity of Cartagena. 476 pp. (In Spanish) Metwaly, M., El-Qady, G., Matsushima, J., Szalai, S., Al-Arifi, N. S. N., & Taha, A. (2008). Contribution of 3-D electrical resistivity tomography for landmines detection. Nonlinear Processes in Geophysics, 15, 977–986. Moreno-Grau, S., Cascales-Pujalte, J. A., Martínez-García, M. J., Angosto, J. M., Moreno, J., Bayo, J., García-Sánchez, A., Moreno-Clavel, J. (2002). Relationships between levels of lead, cadmium, zinc and copper in soil in settleable particulate matter in Cartagena. Water, Air and Soil Pollution, 137, 365–383. Nguyen, H. L., Braun, M., Szaloski, I., Baeyens, W., Van Grieken, R., & Leermakers, M. (2009). Tracing the metal pollution history of the Tisza river through the analysis of a sediment depths profile. Water, Air, and Soil Pollution, 200, 119–132. Nordstrom, D.K., Alpers, C.N., (1999). Geochemistry of acid mine waters; in Plumlee G.S. and Logsdon, M.J. (eds) The environmental geochemistry of mineral deposits, part A. Processes, techniques and health issues. Society of Economic Geologists, reviews in economic geology, v. 6A, pp. 133–160. NRCS (Natural Resources Conservation Services) (2004). Soil Survey Laboratory Methods Manual. Version 4.0. Soil Survey Investigations report Nº 42. 735 pp. <http://soils.usda.gov/technical/lmm/>. O’Day, P. A., Carroll, S. A., & Waychunas, G. A. (1998). Rock–water interactions controlling zinc, cadmium and lead concentrations in surface waters and sediments, U.S. Tri-State Mining. 1. Molecular identification using X-ray absorption spectroscopy. Environmental Science & Technology, 32(7), 943–955. Pham, V.N., Boyer, D., Le Mouël, J.L., Nguyen, T.K.T. (2002). Hydrogeological investigation in the Mekong Delta around Ho-Chi-Minh City (South Vietnam) by electric tomography. C.R. Geoscience, 334, 733–740. Prietzel, J., Thieme, J., Herre, A., Salomé, M., & Eichert, D. (2008). Differentiation between adsorbed and precipitated sulphate in soils and at micro-sites of soil aggregates by sulphur K-edge XANES. European Journal of Soil Science, 59, 730–743. Reimann, C., & Caritat, P. (1998). Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist (p. 398). New York: Springer. Robles-Arenas, V.M. (2007). Caracterización hidrogeológica de la Sierra de Cartagena–La Unión (SE de la Peninsula Ibérica). Impacto de la minería abandonada sobre el medio hídrico. PhD Tesis. Technical University of Catalonia. 146 pp. Robles-Arenas, V. M., Rodríguez, R., García, C., Manteca, J. I., & Pascual, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environmental Geology, 51(1), 47–64. Rodriguez, L., Ruiz, E., Alonso-Azcarate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116. Rousseau, R. M. (2001). Detection limit and estimate of uncertainty of analytical XRF results. Rigaku Journal, 18(2), 33–47. Roussel, C., Neel, C., & Bril, H. (2000). Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. The Science of the Total Environment, 263, 209–219. Simonneau, J. (1973). Mar Menor. Evolution sedimentologique et geoquimique recent du remplissage. Ph.D. thesis, University Paul Sabatier, France, 172 pp. Soupios, P., Papadopoulos, N., Papadopoulos, I., Kouli, M., Vallianatos, F., Sarris, A., et al. (2007). Application of integrated methods in mapping waste disposal areas. Environmental Geology, 53, 661–675. SPECTRAplus software package, (1998). Bruker AXS, Oestliche Rheinbrueckenstr. 50, D-76187 Karlsruhe, Germany. Stumm, W., & Morgan, J. J. (1996). Aquatic Chemistry Chemical Equilibria and Rates in Natural Waters (3rd ed., p. 1022). New York: Wiley. Svoboda, J. (2004). Review of magnetic separation equipment and techniques. In J. Svoboda (Ed.), Magnetic Techniques for the Treatment of Materials. New York: Springer. 642 pp. Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., et al. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287–328. U.S. EPA. (2008) Drinking water contaminants. Environmental Protection Agency (EPA): http://www.epa.gov/safewater/contaminants/index.html#listmcl (May, 2008) Vilar, J.B., Egea-Bruno, P.M. (1990). La minería murciana contemporánea (1840–1930). Universidad de Murcia, Academia Alfonso X el Sabio. Excmo. Ayuntamiento de Cartagena, Caja Murcia (Eds.), Spain, 389 pp. Vilar, J. B., Egea, P. M., & Fernandez, J. C. (1991). La minería murciana contemporánea (1930–1985). Madrid: Instituto Tecnológico Geominero de España. WHO. (2006). Guidelines for drinking water quality. 3rd Edition. Yang, H. D., & Rose, N. L. (2003). Distribution of mercury in six lake sediment cores across the UK. The Science of the Total Environment, 304(1–3), 391–404. Younger, P. L., Mackay, R., & Connorton, B. J. (1993). Streambed sediment as a barrier to groundwater pollution: Insights from fieldwork and modelling in the River Thames Basin. Water Environment Journal, 7(6), 577–585. Younger, P. L., & Robins, N. S. (2002). Mine Water Hydrogeology and Geochemistry (p. 396). London: Geological society.