Distributed robustness in cellular networks: insights from synthetic evolved circuits

Journal of the Royal Society Interface - Tập 6 Số 33 - Trang 393-400 - 2009
Javier Macía1, Ricard V. Solé1,2
1ICREA-Complex Systems Lab, Universitat Pompeu FabraParc de Recerca Biomedica de Barcelona, Dr Aiguader 80, 08003 Barcelona, Spain
2Santa Fe Institute1399 Hyde Park Road, Santa Fe, NM 87501, USA

Tóm tắt

Evolved natural systems are known to display some sort of distributed robustness against the loss of individual components. Such type of robustness is not just the result of redundancy. Instead, it seems to be based on degeneracy, i.e. the ability of elements that are structurally different to perform the same function or yield the same output. Here, we explore the problem of how relevant is degeneracy in a class of evolved digital systems formed by NAND gates, and what types of network structures underlie the resilience of evolved designs to the removal or loss of a given unit. It is shown that our fault tolerant circuits are obtained only if robustness arises in a distributed manner. No such reliable systems were reached just by means of redundancy, thus suggesting that reliable designs are necessarily tied to degeneracy.

Từ khóa


Tài liệu tham khảo

Adami C Introduction to artificial life. 1998 New York NY:Springer.

10.1038/16483

10.1016/j.pbi.2006.11.008

10.1002/cplx.20130

Ash R.B Information theory. 1965 New York NY:Dover.

10.1162/106454600568834

Banzhaf W, 2006, Genetic programming—theory and applications III, 207

10.1098/rspb.2000.1280

10.1016/j.jtbi.2006.11.012

10.1371/journal.pcbi.0030015

Conrad M Adaptability. 1983 New York NY:Plenum Press.

Cowan J.D& Vinograd J Reliable computation in the presence of noise. 1963 Cambridge MA:MIT Press.

10.1073/pnas.231499798

10.1098/rsif.2006.0152

10.1016/S0960-9822(02)00855-2

10.1016/S0303-2647(01)00178-2

Iba H. Iwata M. & Higuchi T. 1997 Machine learning approach to gate-level evolvable hardware. In Proc. 1st Int. Conf. on Evolvable Systems: From Biology to Hardware (eds T. Higuchi M. Iwata & W. Liu). Lecture Notes on Computer Science no. 1259 pp. 327–343. London UK: Springer.

Jen E. (ed.) 2005 Robust design. New York NY: Oxford University Press.

10.1016/0022-5193(69)90015-0

Kauffman S.A The origins of order. 1993 New York NY:Oxford University Press.

10.1073/pnas.2036429100

10.1073/pnas.0509132102

Koza J.R Genetic programming: on the programming of computers by means of natural selection. 1992 Cambridge MA:MIT Press.

10.1073/pnas.032668599

10.1038/nature01568

10.1073/pnas.0305937101

10.1002/bies.950160907

10.1006/jtbi.1998.0701

10.1093/bioinformatics/15.7.593

Miller J. & Hartmann M. 2001 Evolving messy gates for fault tolerance: some preliminary findings. In Proc. 3rd NASA Workshop on Evolvable Hardware pp. 116–123.

Miller J. Thompson A. Thompson P. & Fogarty T. (eds) 2000 Proc. 3rd Int. Conf. on Evolvable Systems: From Biology to Hardware . Lecture Notes on Computer Science no. 1801. Berlin Germany: Springer.

10.1016/j.pbiomolbio.2004.03.002

10.1109/JPROC.2004.826600

Solé R.V& Goodwin B.C Signs of life: how complexity pervades biology. 2001 New York NY:Basic Books.

10.1016/j.tree.2006.05.013

10.1098/rsif.2007.1108

Solé R.V, 2003, Adaptive walks in a gene network model of morphogenesis: insights into the Cambrian explosion, Int. J. Dev. Biol, 47, 685

10.1016/S1364-6613(98)01259-5

10.1073/pnas.96.6.3257

von Neumann J. 1952 Probabilistic logics and the synthesis of reliable organisms from unreliable components pp. 43–98. Lecture Notes California Institute of Technology.

Wagner A Robustness and evolvability in living systems. 2005 Princeton NJ:Princeton University Press.

10.1038/nrg2267

10.1023/A:1023307812034

10.1016/j.jtbi.2007.09.004

Wuensche A, 1992, SFI Studies in the Sciences of Complexity

Yu T. & Miller J. F. 2001 Neutrality and the evolvability of Boolean function landscape . Lecture Notes in Computer Science no. 2038 pp. 204–217. New York NY: Springer.