Distinct translation regulation by two alternative 5′UTRs of a stress-responsive protein – dPrx I

Journal of Biomedical Science - Tập 12 - Trang 729-739 - 2005
Chien-Wen Chen1, Tzu-Yang Lin1, Tsan-Chi Chen1,2, Jyh-Lyh Juang1
1Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Taiwan
2Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan

Tóm tắt

Translation efficiency is often regulated in part by 5′-untranslated region (5′UTR). Sequence analysis of an evolutionarily conserved stress-responsive protein, Drosophila Peroxiredoxin I (dPrx I), found the transcript to have two alternative 5′UTRs that lead to an identical coding sequence: namely Ia and Ib. Although both isoforms coexisted in Drosophila cells, the Ia isoform appeared to be dominant. Furthermore, reporter assay found that Ia enhanced translation in steady-state cells while Ib increased translation in cells under oxidative stress. Together, our data suggest that the two alternative 5′UTRs of dPrx I may be involved in a translational regulatory mechanism that responds to cellular oxidative stress.

Tài liệu tham khảo

Mignone F., Gissi C., Liuni S. and Pesole G., Untranslated regions of mRNAs, Genome Biol. 3: reviews 0004.1–0004.10, 2002. 2. Gray N.K., (1998) Translational control by repressor proteins binding to the 5′UTR of mRNAs. Methods Mol. Biol. 77:379–397 3. Van der Velden A.W. and Thomas A.A. (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell Biol. 31:87–106 4. Ashizuka M., Fukuda T., Nakamura T., Shirasuna K., Iwai K., Izumi H., Kohno K., Kuwano M. and Uchiumi T., (2002) Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2. Mol. Cell Biol. 22:6375–6383 5. Eisenstein R.S., (2002) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu. Rev. Nutr. 20:627–662 6. Kieft J.S., Zhou K., Jubin R. and Doudna J.A., (2001) Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7:194–206 7. Rodriguesz J., Agudo M., Van Damme J., Vandekerckhove J. and Santaren J.F., (2000) Polypeptides differentially expressed in imaginal discs define the peroxiredoxin family of genes in Drosophila. Eur. J. Biochem. 267:487–489 8. Shau H., Butterfield L.H., Chiu R. and Kim A., (1994) Cloning and sequence analysis of candidate human natural killer-enhancing factor genes. Immunogenetics 40:129–134 9. Prosperi M.T., Ferbus D., Karczinski I. and Goubin G., (1993) A human cDNA corresponding to a gene overexpressed during cell proliferation encodes a product sharing homology with amoebic and bacterial proteins. J. Biol. Chem. 268:11050–11056 10. Chae H.Z., Kim I.H., Kim K. and Rhee S.G., (1993) Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J. Biol. Chem. 268:16815–16821 11. Ishii T., Yamada M., Sato H., Matsue M., Taketani S., Nakayama K., Sugita Y. and Bannai S. (1993) Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J. Biol. Chem. 268:18633–18636 12. Chang T.S., Jeong W., Choi S.Y., Yu S., Kang S.W. and Rhee S.G., (2002) Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem. 277:25370–25376 13. Mu Z.M., Yin Z.X.Y. and Prochownik E.V., (2002) Pag, a Putative Tumor Suppressor, Interacts with the Myc Box II Domain of c-Myc and Selectively Alters Its Biological Function and Target Gene Expression. J. Biol. Chem. 277:43175–43184 14. Wen S.T. and Van Etten R.A., (1997) The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev. 11:2456–2467 15. Butterfield L.H., Merino A., Golub S.H. and Shau H., (1999) From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid. Redox. Signal 1:385–402 16. Kim H., Lee T.H., Park E.S., Suh J.M., Park S.J., Chung H.K., Kwon O.Y., Kim Y.K., Ro H.K. and Shong M., (2000) Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. J. Biol. Chem. 275:18266–18270 17. Oh S.K., Scott M.P. and Sarnow P., (1992) Homeotic gene Antennapedia mRNA contains 5′-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev. 6:1643–1653 18. Radyuk S.N., Klichko V.I., Spinola B., Sohal R.S. and Orr W.C., (2001) The peroxiredoxin gene family in Drosophila melanogaster. Free Radic. Biol. Med. 31:1090–1100 19. Radyuk S.N., Sohal R.S. and Orr W.C., (2003) Thioredoxin peroxidases can foster cytoprotection or cell death in response to different stressors: over- and under-expression of thioredoxin peroxidase in Drosophila cells. Biochem J. 371:743–752 20. Rabilloud T., Heller M., Gasnier F., Luche S., Rey C., Aebersold R., Benahmed M., Louisot P. and Lunardi J., (2002) Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277:19396–19401 21. Mitsumoto A., Takanezawa Y., Okawa K., Iwamatsu A. and Nakagawa Y., (2001) Variants of peroxiredoxins expression in response to hydroperoxide stress. Free Radic. Biol. Med. 30:625–635 22. Lin T.Y., Huang C.H., Chou W.G. and Juang J.L., (2004) Abi enhances Abl-mediated Cdc2 phosphorylation and inactivation. J. Biomed. Sci. 11:902–910 23. Wang Y., Newton D.C. and Marsden P.A., (1999) Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit. Rev. Neurobiol. 13:21–43 24. Mikulits W., Schranzhofer M., Beug H. and Mullner E.W., (1999) Post-transcriptional control via iron-responsive elements: the impact of aberrations in hereditary disease. Mutat. Res. 437:219–230 25. Holcik M., Sonenberg N. and Korneluk R.G., (2000) Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16:469–473 26. Stoneley M. and Willis A.E., (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23:3200–3207 27. Markovtsov V., Nikolic J.M., Goldman J.A., Turck C.W., Chou M.Y. and Black D.L., (2000) Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell Biol. 20:7463–7479 28. Gosert R., Chang K.H., Rijnbrand R., Yi M., Sangar D.V. and Lemon, S.M., (2000) Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites In vivo. Mol. Cell. Biol. 20:1583–1595 29. Kim Y.K., Hahm B. and Jang S.K., (2000) Polypyrimidine tract-binding protein inhibits translation of bip mRNA. J. Mol. Biol. 304:119–133 30. Pyronnet S., Pradayrol L. and Sonenberg N., (2000) A cell cycle-dependent internal ribosome entry site. Mol. Cell 5:607–616 31. Rubtsova M.P., Sizova D.V., Dmitriev S.E., Ivanov D.S., Prassolov V.S. and Shatsky I.N., (2003) Distinctive properties of the 5′-untranslated region of human hsp70 mRNA. J. Biol. Chem. 278:22350–22356 32. Hernandez G., Vazquez-Pianzola P., Sierra J.M. and Rivera-Pomar R., (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10:1783–1797 33. Dredge B.K., Polydorides A.D. and Darnell R.B., (2001) The splice of life: alternative splicing and neurological disease. Nat. Rev. Neurosci. 2:43–50 34. Modrek B. and Lee C., (2002) A genomic view of alternative splicing. Nat. Genet. 30:13–19 35. Nissim-Rafinia M. and Kerem B., (2002) Splicing regulation as a potential genetic modifier. Trends Genet. 18:123–127 36. Wang Y., Newton D.C., Robb G.B., Kau C.L., Miller T.L. Cheung A.H., Hall A.V., VanDamme S., Wilcox J.N. and Marsden P.A., (1999) RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc. Natl. Acad. Sci. USA 96:12150–12155 37. Philips A.V. and Cooper T.A., (2000) RNA processing and human disease. Cell Mol. Life Sci. 57:235–249 38. Signori E., Bagni C., Papa S., Primerano B., Rinaldi M., Amaldi F. and Fazio V.M., (2001) A somatic mutation in the 5′UTR of BRCA1 gene in sporadic breast cancer causes down-modulation of translation efficiency. Oncogene 20:4596–4600 39. Wang S.I. and Mukhtar H., (2002) A high-efficiency translational control element with potential for cancer gene therapy. Int. J. Oncol. 20:1269–1274 40. Rabadan-Diehl C., Volpi S., Nikodemova M. and Aguilera G., (2003) Translational regulation of the vasopressin v1b receptor involves an internal ribosome entry site. Mol. Endocrinol. 17:1959–1971 41. Ye X., Fong P., Iizuka N., Choate D. and Cavener D.R., (1997) Ultrabithorax and Antennapedia 5′ untranslated regions promote developmentally regulated internal translation initiation. Mol. Cell. Biol. 17:1714–1721