Distinct contributions of GluA1-containing AMPA receptors of different hippocampal subfields to salience processing, memory and impulse control

Translational Psychiatry - Tập 12 Số 1
Kasyoka Kilonzo1, Daniel Strahnen1, Vivien Prex1, John Gems1, Bastiaan van der Veen1, Sampath K. T. Kapanaiah1, Bhargavi K. B. Murthy1, Stefanie Schulz1, Rolf Sprengel2, David M. Bannerman3, Dennis Kätzel1
1Institute of Applied Physiology, Ulm University, Ulm, Germany
2Max Planck Institute for Medical Research, Heidelberg, Germany
3Department of Experimental Psychology, University of Oxford, Oxford, UK

Tóm tắt

AbstractSchizophrenia is associated with a broad range of severe and currently pharmacoresistant cognitive deficits. Prior evidence suggests that hypofunction of AMPA-type glutamate receptors (AMPARs) containing the subunit GLUA1, encoded by GRIA1, might be causally related to impairments of selective attention and memory in this disorder, at least in some patients. In order to clarify the roles of GluA1 in distinct cell populations, we investigated behavioural consequences of selective Gria1-knockout in excitatory neurons of subdivisions of the prefrontal cortex and the hippocampus, assessing sustained attention, impulsivity, cognitive flexibility, anxiety, sociability, hyperactivity, and various forms of short-term memory in mice. We found that virally induced reduction of GluA1 across multiple hippocampal subfields impaired spatial working memory. Transgene-mediated ablation of GluA1 from excitatory cells of CA2 impaired short-term memory for conspecifics and objects. Gria1 knockout in CA3 pyramidal cells caused mild impairments of object-related and spatial short-term memory, but appeared to partially increase social interaction and sustained attention and to reduce motor impulsivity. Our data suggest that reduced hippocampal GluA1 expression—as seen in some patients with schizophrenia—may be a central cause particularly for several short-term memory deficits. However, as impulse control and sustained attention actually appeared to improve with GluA1 ablation in CA3, strategies of enhancement of AMPAR signalling likely require a fine balance to be therapeutically effective across the broad symptom spectrum of schizophrenia.

Từ khóa


Tài liệu tham khảo

Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science. 1999;284:1805–11.

Hoffman DA, Sprengel R, Sakmann B. Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci USA. 2002;99:7740–5.

Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron. 2018;100:314–29.

Erickson MA, Maramara LA, Lisman J. A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory. J Cogn Neurosci. 2009;22:2530–40.

Duman RS, Shinohara R, Fogaça MV, Hare B. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0400-x.

Lur G, Higley MJ. Glutamate receptor modulation is restricted to synaptic microdomains. Cell Rep. 2015;12:326–34.

Barkus C, Sanderson DJ, Rawlins JNP, Walton ME, Harrison PJ, Bannerman DM. What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit. Mol Psychiatry. 2014;19:1060–70.

Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, et al. Genome-wide association analysis identifies 14 new risk loci for schizophrenia. Nat Genet. 2013;45:1150–9.

Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

Kang WS, Park JK, Kim SK, Park HJ, Lee SM, Song JY, et al. Genetic variants of GRIA1 are associated with susceptibility to schizophrenia in Korean population. Mol Biol Rep. 2012;39:10697–703.

Eastwood SL, McDonald B, Burnet PWJ, Beckwith JP, Kerwin RW, Harrison PJ. Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluRl and GluR2 in medial temporal lobe neurons in schizophrenia. Mol Brain Res. 1995;29:211–23.

Eastwood SL, Kerwin RW, Harrison PJ. Immunoautoradiographic evidence for a loss of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psychiatry. 1997;41:636–43.

Harrison PJ, McLaughlin D, Kerwin RW. Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet. 1991;337:450–2.

Breese CR, Freedman R, Leonard SS. Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res. 1995;674:82–90.

Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology. 2007;32:1888–902.

Li W, Ghose S, Gleason K, Begovic A, Perez J, Bartko J, et al. Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia. Am J Psychiatry. 2015;172:373–82.

Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S. Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophr Bull. 2012;38:927–35.

Perez JM, Berto S, Gleason K, Ghose S, Tan C, Kim T-K, et al. Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Mol Psychiatry. 2021;26:2577–89.

Barkus C, Feyder M, Graybeal C, Wright T, Wiedholz L, Izquierdo A, et al. Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology. 2011. http://www.sciencedirect.com/science/article/pii/S0028390811002413.

Panayi MC, Boerner T, Jahans-Price T, Huber A, Sprengel R, Gilmour G, et al. Glutamatergic dysfunction leads to a hyper-dopaminergic phenotype through deficits in short-term habituation: a mechanism for aberrant salience. bioRXiv:2021. 2021.07.23.453593. [Preprint]. 2021. Available from: https://www.biorxiv.org/content/10.1101/2021.07.23.453593v1.abstract.

Sanderson DJ, Hindley E, Smeaton E, Denny N, Taylor A, Barkus C, et al. Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory. Learn Mem. 2011;18:181–90.

Sanderson DJ, Sprengel R, Seeburg PH, Bannerman DM. Deletion of the GluA1 AMPA receptor subunit alters the expression of short-term memory. Learn Mem. 2011;18:128–31.

Reisel D, Bannerman DM, Schmitt WB, Deacon RMJ, Flint J, Borchardt T, et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci. 2002;5:868–73.

Sanderson DJ, Good MA, Skelton K, Sprengel R, Seeburg PH, Rawlins JNP, et al. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: evidence for a dual-process memory model. Learn Mem. 2009;16:379–86.

Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal hyperactivity as a druggable circuit-level origin of aberrant salience in schizophrenia. Front Pharmacol. 2020;11:1628. https://doi.org/10.3389/fphar.2020.486811.

Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson R-M, Hefner K, et al. Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry. 2007;13:631–40.

Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160:13–23.

Fond G, Micoulaud-Franchi J-A, Brunel L, Macgregor A, Miot S, Lopez R, et al. Innovative mechanisms of action for pharmaceutical cognitive enhancement: a systematic review. Psychiatry Res. 2015;229:12–20.

Wezenberg E, Jan Verkes R, Ruigt GSF, Hulstijn W, Sabbe BGC. Acute effects of the ampakine farampator on memory and information processing in healthy elderly volunteers. Neuropsychopharmacology. 2007;32:1272–83.

Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J, et al. A placebo-controlled add-on trial of the ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology. 2008;33:465–72.

Schmitt WB, Sprengel R, Mack V, Draft RW, Seeburg PH, Deacon RMJ, et al. Restoration of spatial working memory by genetic rescue of GluR-A–deficient mice. Nat Neurosci. 2005;8:270–2.

Mack V, Burnashev N, Kaiser KM, Rozov A, Jensen V, Hvalby O, et al. Conditional restoration of hippocampal synaptic potentiation in Glur-A-deficient mice. Science. 2001;292:2501–4.

Bygrave AM, Jahans-Price T, Wolff AR, Sprengel R, Kullmann DM, Bannerman DM, et al. Hippocampal–prefrontal coherence mediates working memory and selective attention at distinct frequency bands and provides a causal link between schizophrenia and its risk gene GRIA1. Transl Psychiatry. 2019;9:142.

Freudenberg F, Resnik E, Kolleker A, Celikel T, Sprengel R, Seeburg PH. Hippocampal GluA1 expression in Gria1−/− mice only partially restores spatial memory performance deficits. Neurobiol Learn Mem. 2016;135:83–90.

Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, Lebeau FE, Bannerman DM, et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron. 2007;53:591–604.

Freudenberg F, Marx V, Seeburg PH, Sprengel R, Celikel T. Circuit mechanisms of GluA1-dependent spatial working memory. Hippocampus. 2013;23:1359–66.

Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014;508:88–92.

Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002;297:211–8.

Grimm CM, Aksamaz S, Schulz S, Teutsch J, Sicinski P, Liss B, et al. Schizophrenia-related cognitive dysfunction in the Cyclin-D2 knockout mouse model of ventral hippocampal hyperactivity. Transl Psychiatry. 2018;8:212.

Kilonzo K, Veen B, van der, Teutsch J, Schulz S, Kapanaiah SKT, Liss B, et al. Delayed-matching-to-position working memory in mice relies on NMDA-receptors in prefrontal pyramidal cells. Sci Rep. 2021;11:1–19.

Bygrave AM, Masiulis S, Nicholson E, Berkemann M, Sprengel R, Harrison P, et al. Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801. Transl Psychiatry. 2016;6:e778.

Teutsch J, Kätzel D. Operant assessment of DMTP spatial working memory in mice. Front Behav Neurosci. 2019;13:193. https://doi.org/10.3389/fnbeh.2019.00193.

van der Veen B, Kapanaiah SKT, Kilonzo K, Steele-Perkins P, Jendryka MM, Schulz S, et al. Control of impulsivity by Gi-protein signalling in layer-5 pyramidal neurons of the anterior cingulate cortex. Commun Biol. 2021;4:1–16.

Kapanaiah SKT, van der Veen B, Strahnen D, Akam T, Kätzel D. A low-cost open-source 5-choice operant box system optimized for electrophysiology and optophysiology in mice. Sci Rep. 2021;11:22279.

Akam T, Lustig A, Rowland JM, Kapanaiah SK, Esteve-Agraz J, Panniello M, et al. Open-source, Python-based, hardware and software for controlling behavioural neuroscience experiments. eLife. 2022;11:e67846.

Fitzgerald PJ, Barkus C, Feyder M, Wiedholz LM, Chen Y-C, Karlsson R-M, et al. Does gene deletion of AMPA GluA1 phenocopy features of schizoaffective disorder? Neurobiol Dis. 2010;40:608–21.

Boerner T, Bygrave AM, Chen J, Fernando A, Jackson S, Barkus C, et al. The group II metabotropic glutamate receptor agonist LY354740 and the D2 receptor antagonist haloperidol reduce locomotor hyperactivity but fail to rescue spatial working memory in GluA1 knockout mice. Eur J Neurosci. 2017;45:912–21.

Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, et al. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci. 2012;15:1153–9.

Sanderson DJ, Bannerman DM. The role of habituation in hippocampus-dependent spatial working memory tasks: evidence from GluA1 AMPA receptor subunit knockout mice. Hippocampus. 2012;22:981–94.

Strahnen D, Kapanaiah SKT, Bygrave AM, Liss B, Bannerman DM, Akam T, et al. Highly task-specific and distributed neural connectivity in working memory revealed by single-trial decoding in mice and humans. bioRxiv: 2021.04.20.440621. [Preprint]. 2021. Available from: https://www.biorxiv.org/content/10.1101/2021.04.20.440621v1.full.

Spitzer M. A neurocomputational approach to delusions. Compr Psychiatry. 1995;36:83–105.

Bienkowski MS, Bowman I, Song MY, Gou L, Ard T, Cotter K, et al. Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat Neurosci. 2018;21:1628–43.

Chen S, He L, Huang AJY, Boehringer R, Robert V, Wintzer ME, et al. A hypothalamic novelty signal modulates hippocampal memory. Nature. 2020;586:270–4.

Donegan ML, Stefanini F, Meira T, Gordon JA, Fusi S, Siegelbaum SA. Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model. Nat Neurosci. 2020;23:1365–75.

Middleton SJ, McHugh TJ. CA2: a highly connected intrahippocampal relay. Annu Rev Neurosci. 2020;43:55–72.

Katthagen T, Dammering F, Kathmann N, Kaminski J, Walter H, Heinz A, et al. Validating the construct of aberrant salience in schizophrenia—behavioral evidence for an automatic process. Schizophr Res Cogn. 2016;6:22–27.

Avery SN, McHugo M, Armstrong K, Blackford JU, Woodward ND, Heckers S. Disrupted habituation in the early stage of psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:1004–12.

Williams LE, Blackford JU, Luksik A, Gauthier I, Heckers S. Reduced habituation in patients with schizophrenia. Schizophr Res. 2013;151:124–32.

Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13:76–83.

Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

Hunker AC, Soden ME, Krayushkina D, Heymann G, Awatramani R, Zweifel LS. Conditional single vector CRISPR/SaCas9 viruses for efficient mutagenesis in the adult mouse nervous system. Cell Rep. 2020;30:4303–.e6.

Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res. 2003;146:105–19.

Muir JL, Everitt BJ, Robbins TW. The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex. 1996;6:470–81.

Murphy ER, Fernando ABP, Urcelay GP, Robinson ESJ, Mar AC, Theobald DEH, et al. Impulsive behaviour induced by both NMDA receptor antagonism and GABAA receptor activation in rat ventromedial prefrontal cortex. Psychopharmacology. 2012;219:401–10.

Tobias Bast, Marie Pezze. McGarrity stephanie. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br J Pharm. 2017;174:3211–25.

Tan Z, Robinson HL, Yin D-M, Liu Y, Liu F, Wang H, et al. Dynamic ErbB4 activity in hippocampal-prefrontal synchrony and top-down attention in rodents. Neuron. 2018;98:380–.e4.

Finlay JM, Dunham GA, Isherwood AM, Newton CJ, Nguyen TV, Reppar PC, et al. Effects of prefrontal cortex and hippocampal NMDA NR1-subunit deletion on complex cognitive and social behaviors. Brain Res. 2015;1600:70–83.

Romberg C, Raffel J, Martin L, Sprengel R, Seeburg PH, Rawlins JNP, et al. Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus. Eur J Neurosci. 2009;29:1141–52.

Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313:1093–7.

Selcher JC, Xu W, Hanson JE, Malenka RC, Madison DV. Glutamate receptor subunit GluA1 is necessary for long-term potentiation and synapse unsilencing, but not long-term depression in mouse hippocampus. Brain Res. 2012;1435:8–14.

Mueser KT, McGurk SR. Schizophrenia. Lancet. 2004;363:2063–72.

Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.

Arai AC, Kessler M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets. 2007;8:583–602.

Ingvar M, Ambros-Ingerson J, Davis M, Granger R, Kessler M, Rogers GA, et al. Enhancement by an ampakine of memory encoding in humans. Exp Neurol. 1997;146:553–9.

Lynch G, Granger R, Ambros-Ingerson J, Davis CM, Kessler M, Schehr R. Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp Neurol. 1997;145:89–92.

Ranganathan M, DeMartinis N, Huguenel B, Gaudreault F, Bednar MM, Shaffer CL, et al. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242. Mol Psychiatry. 2017;22:1633–40.

Tanaka M, Kunugi A, Suzuki A, Suzuki N, Suzuki M, Kimura H. Preclinical characterization of AMPA receptor potentiator TAK-137 as a therapeutic drug for schizophrenia. Pharm Res Perspect. 2019;7:e00479.

Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry. 2010;167:1178–93.

Harrison PJ. Recent genetic findings in schizophrenia and their therapeutic relevance. J Psychopharmacol. 2015;29:85–96.