Phân tích quy trình lai giống đậu nành thực tiễn bằng cách phát triển ZDX1, một mảng chức năng thông lượng cao

Theoretical and Applied Genetics - Tập 135 - Trang 1413-1427 - 2022
Rujian Sun1,2,3, Bincheng Sun3, Yu Tian2, Shanshan Su4, Yong Zhang5, Wanhai Zhang3, Jingshun Wang3, Ping Yu3, Bingfu Guo2, Huihui Li2, Yanfei Li2, Huawei Gao2, Yongzhe Gu2, Lili Yu2, Yansong Ma2, Erhu Su6, Qiang Li6, Xingguo Hu3, Qi Zhang3, Rongqi Guo3, Shen Chai3, Lei Feng3, Jun Wang2, Huilong Hong2, Jiangyuan Xu2, Xindong Yao7, Jing Wen2, Jiqiang Liu4, Yinghui Li1,2, Lijuan Qiu1,2
1College of Agriculture, Northeast Agricultural University, Harbin, People’s Republic of China
2National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
3Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, People’s Republic of China
4Beijing Compass Biotechnology Co, Ltd, Beijing, People’s Republic of China
5Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, People’s Republic of China
6Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, People’s Republic of China
7Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria

Tóm tắt

Chúng tôi đã phát triển mảng chức năng ZDX1 với khả năng thông qua cao để đánh giá và lựa chọn chính xác cả cha mẹ và con cái, điều này có thể thúc đẩy nhanh chóng quá trình lai giống đậu nành. Công nghệ microarray hỗ trợ việc định gen nhanh chóng, chính xác và tiết kiệm chi phí. Ở đây, sử dụng dữ liệu tái phân tích từ 2214 mẫu đậu nành đại diện, chúng tôi đã phát triển mảng chức năng có thông lượng cao ZDX1, chứa 158.959 SNP, bao phủ 90,92% các gen đậu nành và các vị trí liên quan đến các tính trạng quan trọng. Bằng cách áp dụng mảng, tổng cộng 817 mẫu được định gen, bao gồm ba quần thể con của các dòng cha mẹ ứng viên, các dòng cha mẹ và con cái của chúng từ quá trình lai giống thực tiễn. Các SNP cố định đã được xác định trong con cái, cho thấy sự chọn lọc nhân tạo trong quá trình lai giống. Bằng cách xác định các vị trí chức năng của các tính trạng mục tiêu, con cái kháng sâu bọ kén đậu nành mới và các nguồn gốc liên quan đến sự trưởng thành mới đã được xác định thông qua các tổ hợp allele, cho thấy rằng các vị trí chức năng cung cấp một phương pháp hiệu quả để sàng lọc nhanh chóng các tính trạng hoặc nguồn gen mong muốn. Đặc biệt, chúng tôi thấy rằng chỉ số lai giống (BI) là một chỉ số tốt cho việc chọn lọc con cái. Con cái ưu việt được sinh ra từ sự kết hợp của các cha mẹ có liên quan xa, với ít nhất một cha mẹ có BI cao hơn. Hơn nữa, những tổ hợp mới dựa trên hiệu suất tốt được đề xuất cho quá trình lai giống tiếp theo sau khi loại bỏ các cha mẹ dư thừa và có liên quan gần gũi. Phân tích dự đoán tuyến tính tốt nhất trên toàn diện gen (GBLUP) là phương pháp phân tích tốt nhất và đạt được độ chính xác cao nhất trong việc dự đoán bốn tính trạng khi so sánh SNP trong các vùng gen thay vì SNP toàn bộ hệ gen hoặc SNP liên gen. Độ chính xác dự đoán đã được cải thiện 32,1% bằng cách sử dụng con cái để mở rộng quần thể huấn luyện. Tóm lại, một xét nghiệm đa năng đã chứng minh rằng mảng chức năng ZDX1 cung cấp thông tin hiệu quả cho việc thiết kế và tối ưu hóa một quy trình lai giống để thúc đẩy nhanh chóng quá trình lai giống đậu nành.

Từ khóa

#đậu nành #mảng chức năng ZDX1 #lai giống #SNP #chỉ số lai giống #dự đoán tuyến tính tốt nhất #

Tài liệu tham khảo

Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118 Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Vale G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3–13 Chen HD, Xie WB, He H, Yu HH, Chen W, Li J, Yu RB, Yao Y, Zhang WH, He YQ, Tang XY, Zhou FS, Deng XW, Zhang QF (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant 7:541–553 Cook DE, Lee TG, Guo XL, Melito S, Wang K, Bayless AM, Wang JP, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at rhg1 mediates nematode resistance in soybean. Science 338:1206–1209 Cui YR, Li RD, Li GW, Zhang F, Zhu TT, Zhang QF, Ali J, Li ZK, Xu SZ (2019) Hybrid breeding of rice via genomic selection. Plant Biotechnol J 18:57–67 e Sousa MB, Galli G, Lyra DH, Granato ÍSC, Matias FI, Alves FC, Fritsche-Neto R (2019) Increasing accuracy and reducing costs of genomic prediction by marker selection. Euphytica 215:18 Fang C, Li WY, Li GQ, Wang Z, Zhou ZK, Ma YM, Shen YT, Li CC, Wu YS, Zhu BG, Yang WC, Tian ZX (2013) Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics 40:93–96 Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Crop Sci 11:929–931 GenomeStudio (2008) GenomeStudioTM genotyping module v1.0 user guide Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R (2015) ASReml user guide release 4.1 functional specification. Hemel Hempstead: VSN International Ltd He S, Schulthess AW, Mirdita V, Zhao YS, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641–651 Hwang EY, Song QJ, Jia GF, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genom 15:1 Hyten DL, Song QJ, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952 Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genom 15:1–10 Jeong N, Suh SJ, Kim MH, Lee S, Moon JK, Kim HS, Jeong SC (2012) Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24:4807–4818 Ji Y, Zhao D, Chen X, Yong Z, Wang J (2018) Use of genomic selection and breeding simulation in cross prediction for improvement of yield and quality in wheat (Triticum aestivum L.). The Crop J 6:353–365 Langewisch T, Zhang HX, Vincent R, Joshi T, Xu D, Bilyeu K (2014) Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. PLoS ONE 9:94150 Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha BK, Kang ST, Park BS, Moon JK, Kim N, Jeong SC (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636 Lehermeier C, Wimmer V, Albrecht T, Auinger HJ, Gianola D, Schmid VJ, Schön CC (2013) Sensitivity to prior specification in bayesian genome-based prediction models. Stat Appl Genet Mol Biol 12:375–391 Li XJ, Wang S, Huang J, Li LY, Zhang Q, Ding XD (2014) Improving the accuracy of genomic prediction in chinese holstein cattle by using one-step blending. Genet Sel Evol 46:66 Li YH, Li DL, Jiao YQ, Schnable JC, Li YF, Li HH, Chen HZ, Hong HL, Zhang T, Liu B, Liu ZX, You QB, Tian Y, Guo Y, Guan RX, Zhang LJ, Chang RZ, Zhang ZW, Reif J, Zhou XA, Schnable PS, Qiu LJ (2019) Identification of loci controlling adaptation in chinese soybean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnol J 18:389–401 Li C, Li YH, Li YF, Lu H, Hong HL, Tian Y, Li HY, Zhao T, Zhou XW, Liu J, Zhou X, Jackson SA, Liu B, Qiu LJ (2020) A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant 13:745–759 Liu SM, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang CL, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260 Liu XG, Wang HW, Hu XJ, Li K, Liu ZF, Wu YJ, Huang CL (2019) Improving genomic selection with quantitative trait loci and nonadditive effects revealed by empirical evidence in maize. Front Plant Sci 10:1129 Liu SL, Zhang M, Feng F, Tian ZX (2020) Toward a “Green Revolution” for soybean. Mol Plant 13:688–697 Lourenco D, Legarra A, Tsuruta S, Masuda Y, Aguilar I, Misztal I (2020) Single-step genomic evaluations from theory to practice: using SNP chips and sequence data in BLUPF90. Genes 11:790 Ma YS, Reif JC, Jiang Y, Wen ZX, Wang DC, Liu ZX, Guo Y, Wei SH, Wang SM, Yang CM, Wang HC, Yang CY, Lu WG, Xu R, Zhou R, Wang RZ, Sun ZD, Chen HZ, Zhang WH, Wu JA, Hu GH, Liu CY, Luan XY, Fu YS, Guo T, Han TF, Zhang MC, Sun BC, Zhang L, Chen WY, Wu CX, Sun S, Yuan BJ, Zhou XA, Han DZ, Yan HR, Li WB, Qiu LJ (2016) Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Mol Breed 36:113 Marrano A, Martinez-Garcia PJ, Bianco L, Sideli GM, Di Pierro EA, Leslie CA, Stevens KA, Crepeau MW, Troggio M, Langley CH, Neale DB (2019) A new genomic tool for walnut (Juglans regia L.): development and validation of the high-density Axiom J. regia 700K SNP genotyping array. Plant Biotechnol J 17:1027–1036 Matei G, Woyann LG, Milioli AS, de Bem OI, Zdziarski AD, Zanella R, Coelho ASG, Finatto T, Benin G (2018) Genomic selection in soybean: accuracy and time gain in relation to phenotypic selection. Mol Breed 38:117 Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop J 3:269–283 Mikel MA, Diers BW, Nelson RL, Smith HH (2010) Genetic diversity and agronomic improvement of north American soybean germplasm. Crop Sci 50:1219–1229 Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen XP, Upadhyaya HD, Vishwakarma MK, Leal-Bertioli S, Liang XQ, Bertioli DJ, Guo BZ, Jackson SA, Ozias-Akins P, Varshney RK (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:1–10 Pérez P, de Los CG (2014) Genome-wide regression and prediction with the BGLR statistical package. Genet 198:483–495 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, Bakker P, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575 Qiu LJ, Chang RZ, Liu ZX, Guan RX, Li YH (2006) Descriptors and data standard for soybean (Glycine spp.). China Agriculture Press, Beijing Rasheed A, Hao YF, Xia XC, Khan A, Xu YB, Varshney RK, He ZH (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064 Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183 Shi Z, Liu SM, Noe J, Arelli P, Meksem K, Li ZL (2015) SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genom 16:314 Shu YJ, Yu DS, Wang D, Bai X, Zhu YM, Guo CH (2013) Genomic selection of seed weight based on low-density SCAR markers in soybean. Genet Mol Res 12:2178–2188 Silva-Junior OB, Faria DA, Grattapaglia D (2015) A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytol 206:1527–1540 Singh S, Mahato AK, Jayaswal PK, Singh N, Dheer M, Goel P, Raje RS, Yasin JK, Sreevathsa R, Rai V, Gaikwad K, Singh NK (2020) A 62K genic-SNP chip array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L. Millsp.). Sci Rep 10:4960 Song QJ, Hyten DL, Jia GF, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8:e54985 Song H, Zhang J, Jiang Y, Gao H, Tang S, Mi S, Yu F, Meng Q, Xiao W, Zhang Q (2017) Genomic prediction for growth and reproduction traits in pig using an admixed reference population. J Ani Sci 95:3415–3424 Song HL, Zhang JX, Zhang Q, Ding XD (2019) Using different single-step strategies to improve the efficiency of genomic prediction on body measurement traits in pig. Front Genet 9:1–10 Song QJ, Yan L, Quigley C, Fickus E, Wei H, Chen LF, Dong FM, Araya S, Liu JL, Hyten D, Pantalone V, Nelson RL (2020) Soybean BARCSoySNP6K: An assay for soybean genetics and breeding research. Plant J 104:800–811 Stewart-Brown BB, Song QJ, Vaughn JN, Li ZL (2019) Genomic selection for yield and seed composition traits within an applied soybean breeding program. G3 Genes Genome Genet 9:2253–2265 Tardivel A, Sonah H, Belzile F, Donoughue LSO (2014) Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype-based approach. Plant Genome 7:1–9 Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL, McClean PE, Qiu LJ, Ma JX (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci 107:8563–8568 Tian Y, Yang L, Li YH, Qiu LJ (2018) Development and utilization of KASP marker for SCN3-11 locus resistant to soybean cyst nematode. Acta Agronom Sin 44:26–37 Tian Y, Liu B, Shi XH, Reif JC, Guan R, Li YH, Qiu LJ (2019) Deep genotyping of the gene GmSNAP facilitates pyramiding resistance to cyst nematode in soybean. Crop J 7:677–684 Tsubokura Y, Matsumura H, Xu ML, Liu BH, Nakashima H, Anai T, Kong FJ, Yuan XH, Kanamori H, Katayose Y, Takahashi R, Harada K, Abe J (2013) Genetic variation in soybean at the maturity Locus E4 is involved in adaptation to long days at high latitudes. Agron 3:117–134 Tsubokura Y, Watanabe S, Xia ZJ, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113:429–441 Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883 Viquez-Zamora M, Vosman B, van de Geest H, Bovy A, Visser RGF, Finkers R, van Heusden AW (2013) Tomato breeding in the genomics era: insights from a SNP array. BMC Genome 14:354 Wang J, Chu SS, Zhang HR, Zhu Y, Cheng H, Yu DY (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6:20728 Wang M, Li WZ, Fang C, Xu F, Liu YC, Wang Z, Yang R, Zhang M, Liu SL, Lu SJ, Lin T, Tang JY, Wang YQ, Wang HR, Lin H, Zhu BG, Chen MS, Kong FJ, Liu BH, Zeng DL, Jackson SA, Chu CC, Tian ZX (2018a) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 50:1435–1441 Wang YY, Li YQ, Wu HY, Hu B, Zheng JJ, Zhai H, Lv SX, Liu XL, Chen X, Qiu HM, Yang JY, Zong CM, Han DZ, Wen ZX, Wang DC, Xia ZJ (2018b) Genotyping of soybean cultivars with medium-density array reveals the population structure and QTNs underlying maturity and seed traits. Front Plant Sci 9:610 Xavier A, Muir WM, Rainey KM (2016) Assessing predictive properties of genome-wide selection in soybeans. G3 Genes Genom Genet 6:2611–2616 Xia ZJ, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu SX, Wu HY, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci 109:2155–2164 Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P, Zhang X, Yuan J, Wang Q, Liu F, Dong H, Zhang L, Li X, Meng X, Zhang W, Xiong L, He Y, Wang S, Yu S, Xu C, Luo J, Li X, Xiao J, Lian X, Zhang Q (2015) Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci 112:5411–5419 Xu ML, Xu ZH, Liu BH, Kong FJ, Tsubokura Y, Watanabe S, Xia ZJ, Harada K, Kanazawa A, Yamada T, Abe J (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91 Xu YB, Liu XG, Fu JJ, Wang HW, Wang JK, Huang CL, Prasanna BM, Olsen MS, Wang GY, Zhang AM (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1:100005 Yu HH, Xie WB, Li J, Zhou FS, Zhang QF (2014) A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J 12:28–37 Zhang X, Perez-Rodriguez P, Semagn K, Beyene Y, Babu R, Lopez-Cruz MA, San Vicente F, Olsen M, Buckler E, Jannink JL, Prasanna BM, Crossa J (2015) Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114:291–299 Zhang JP, Song QJ, Cregan PB, Jiang GL (2016) Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet 129:117–130 Zhang DJ, Sun LJ, Li S, Wang WD, Ding YH, Swarm SA, Li LH, Wang XT, Tang XM, Zhang ZF, Tian ZX, Brown PJ, Cai C, Nelson RL, Ma JX (2018) Elevation of soybean seed oil content through selection for seed coat shininess. Nat Plants 4:30–35 Zhao YS, Li Z, Liu GZ, Jiang Y, Maurer HP, Wurschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CF, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci 112:15624–15629 Zhao SL, Jing W, Samuels DC, Sheng QH, Shyr Y, Guo Y (2018) Strategies for processing and quality control of Illumina genotyping arrays. Brief Bioinform 19:765–775 Zhe Z, Erbe M, He JL, Ober U, Li JQ (2015) Accuracy of whole-genome prediction using a genetic architecture enhanced variance-covariance matrix. G3 Genes Genome Genet 5:615–627 Zhong S, Jannink JL (2007) Using quantitative trait loci results to discriminate among crosses on the basis of their progeny mean and variance. Genet 177:567–576