Dispersive liquid–liquid microextraction using extraction solvent lighter than water
Tóm tắt
For the first time a dispersive liquid–liquid microextraction method on the basis of an extraction solvent lighter than water was presented in this study. Three organophosphorus pesticides (OPPs) were selected as model compounds and the proposed method was carried out for their preconcentration from water samples. In this extraction method, a mixture of cyclohexane (extraction solvent) and acetone (disperser) is rapidly injected into the aqueous sample in a special vessel (see experimental section) by syringe. Thereby, a cloudy solution is formed. In this step, the OPPs are extracted into the fine droplets of cyclohexane dispersed into aqueous phase. After centrifuging the fine droplets of cyclohexane are collected on the upper of the extraction vessel. The upper phase (0.40 μL) is injected into the gas chromatograph (GC) for separation. Analytes were detected by a flame ionization detector (FID) (for high concentrations) or MS (for low concentrations). Some important parameters, such as the kind of extraction and dispersive solvents and volume of them, extraction time, temperature, and salt amount were investigated. Under the optimum conditions, the enrichment factors (EFs) ranged from 100 to 150 and extraction recoveries varied between 68 and 105%, both of which are relatively high over those of published methods. The linear ranges were wide (10–100 000 μg/L for GC‐FID and 0.01–1 μg/L for GC‐MS) and LODs were low (3–4 μg/L for GC‐FID and 0.003 μg/L for GC‐MS). The RSDs for 100.0 μg/L of each OPP in water were in the range of 5.3–7.8% (
Từ khóa
Tài liệu tham khảo
Honeycutt R. C. Schabcker D. J. Mechanisms of Pesticides Movement into Ground Water CRC Press Boca Raton FL 1994.
Drinking Water Guideline 98/83/EEC European Union Brussels 1998.
Official Methods of Analysis 15th Edn. AOAC (Association of Analytical Communities) International Arlington VA 1990 Sections 991.07–991.07C.
Djozan D., 2004, Chromatographia, 60, 313