Dispersion and nonlinearity properties of small solid-core photonic fibers with As2Se3 substrate

Hue University Journal of Science: Natural Science - Tập 130 Số 1D - Trang 55-64 - 2021
Thi Thuy Nguyen1, Trong Duc Hoang1, Tran Bao Tran Le2, Van Trong Dang2, Van Lanh Chu2
1University of Education, Hue University, 34 Le Loi St., Hue, Vietnam
2Department of Physics, Vinh University, 182 Le Duan St., Vinh City, Vietnam

Tóm tắt

Characteristics of As2Se3 photonic crystal fibers (PCFs) with a solid-core and small-core diameter are numerically investigated in the long-wavelength range (from 2 to 10 μm). A full modal analysis and optical properties of designed photonic crystal fibers with lattice constant Λ and filling factor d/Λ are presented in terms of chromatic dispersion, effective refractive index, nonlinear coefficients, and confinement loss. The simulation results show that a high nonlinear coefficient of 4410.303 W–1·km–1 and a low confinement loss of 10−20 dB·km–1 can simultaneously be achieved in the proposed PCFs at a 4.5 μm wavelength. Chromatic dispersions are flat. The values of dispersion increase with increasing filling factor d/Λ and decrease with the increase in lattice constant Λ. In particular, some chromatic dispersion curves also cut the zero-dispersion line at two points. The flat dispersion feature, high nonlinearity, and small confinement loss of the proposed photonic crystal fiber structure make it suitable for supercontinuum.

Từ khóa

#Keywords: Small solid core photonic crystal fibers #chromatic dispersion #effective refractive index #confinement loss #nonlinear coefficient and nonlinear properties

Tài liệu tham khảo

Yeh P, Yariv A, Marom E. Theory of Bragg fiber. Journal of the Optical Society of America. 1978;68(9):1196-5. DOI: https://doi.org/10.1364/JOSA.68.001196

Knight JC, Birks TA, Russell PSJ, Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 1996;21(19):1547-2. DOI: https://doi.org/10.1364/OL.21.001547

Sinha RK, Varshney SK. Dispersion properties of photonic crystal fibers. Microwave and Optical Technology Letters. 2003;37:129-132. DOI: https://doi.org/10.1002/mop.10845

Maji PS, Roy Chaudhuri P. Supercontinuum generation in ultra-flat near zero dispersion PCF with selective liquid infiltration. Optik. 2014;125(20):5986-92. DOI: https://doi.org/10.1016/j.ijleo.2014.07.026

Lin-Ping S, Wei-Ping H, Shui-Sheng J. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology. 2003;21(7):1644-1651. DOI: https://doi.org/10.1109/JLT.2003.814397

Ferrando A, Silvestre E, Miret JJ, Andrés P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters. 2000;25(11):790-2. DOI: https://doi.org/10.1364/OL.25.000790

Ferrando A, Silvestre E, Andrés P, Miret JJ, Andrés MV. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express. 2001;9(13):687-97. DOI: https://doi.org/10.1364/OE.9.000687

Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express. 2003;11(8):843-52. DOI: https://doi.org/10.1364/OE.11.000843

Poletti F, Finazzi V, Monro TM, Broderick NGR, Tse V, Richardson DJ. Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Optics Express. 2005;13(10): 3728-36. DOI: https://doi.org/10.1364/OPEX.13.003728

Huttunen A, Törmä P. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Optics Express. 2005;13(2):627-35. DOI: https://doi.org/10.1364/OPEX.13.000627

Saitoh K, Koshiba M. Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters. 2003;15(10):1384-6. DOI: https://doi.org/10.1109/LPT.2003.818215

Kubota H, Kawanishi S, Koyanagi S, Tanaka M, Yamaguchi S. Absolutely single polarization photonic crystal fiber. IEEE Photonics Technology Letters. 2004;16(1):182-4. DOI: https://doi.org/10.1109/LPT.2003.819415

Dobb H, Kalli K, Webb DJ. Temperature-insensitive long period grating sensors in photonic crystal fibre. Electronics Letters. 2004;40(11):657-8. DOI: https://doi.org/10.1049/el:20040433

Dong X, Tam HY, Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters. 2007;90(15):151113. DOI: https://doi.org/10.1063/1.2722058

Hartung A, Heidt AM, Bartelt H. Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Optics Express. 2011;19(8):7742-9. DOI: https://doi.org/10.1364/OE.19.007742

Xueming L, Xiaoqun Z, Xiufeng T, Junhong N, Jianzhong H, Teck Yoong C, et al. Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber. IEEE Photonics Technology Letters. 2005;17(8):1626-8. DOI: https://doi.org/10.1109/LPT.2005.851024

Agrawal A, Kejalakshmy N, Chen J, Rahman BMA, Grattan KTV. Golden spiral photonic crystal fiber: polarization and dispersion properties. Optics Letters. 2008;33(22): 2716-8. DOI: https://doi.org/10.1364/OL.33.002716

Stefaniuk T, Le Van H, Pniewski J, Cao Long V, Ramaniuk A, Grajewski K, et al. Dispersion engineering in soft glass photonic crystal fibers infiltrated with liquids. Event: 16th Conference on Optical Fibers and Their Applications, Lublin and Naleczow, Poland. 2015;9816. DOI: https://doi.org/10.1117/12.2229482

Xuan KD, Van LC, Long VC, Dinh QH, Van Mai L, Trippenbach M, et al. Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics. 2017;49:87. DOI: https://doi.org/10.1007/s11082-017-0929-3

Van Lanh C, Hoang VT, Long VC, Borzycki K, Xuan KD, Quoc VT, et al. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics. 2019;29(7): 075107. DOI: https://doi.org/10.1088/1555-6611/ab2115

Van Le H, Cao VL, Nguyen HT, Nguyen AM, Buczyński R, Kasztelanic R. Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers. Laser Physics. 2018;28(11):115106. DOI: https://doi.org/10.1088/1555-6611/aad93a

Fatome J, Fortier C, Nguyen TN, Chartier T, Smektala F, Messaad K, et al. Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers. Journal of Lightwave Technology. 2009;27(11):1707-15. DOI: https://doi.org/10.1109/JLT.2009.2021672

Vigreux-Bercovici C, Ranieri V, Labadie L, Broquin JE, Kern P, Pradel A. Waveguides based on Te2As3Se5 thick films for spatial interferometry. Journal of Non-Crystalline Solids. 2006;352(23-25):2416-9. DOI: https://doi.org/10.1016/j.jnoncrysol.2006.03.018

Price JHV, Monro TM, Ebendorff-Heidepriem H, Poletti F, Horak P, Finazzi V, et al. Mid-IR Supercontinuum Generation from Nonsilica Microstructured Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics. 2007;13(3):738-49. DOI: https://doi.org/10.1109/JSTQE.2007.896648

Domachuk P, Wolchover NA, Cronin-Golomb M, Wang A, George AK, Cordeiro CMB, et al. Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs. Optics Express. 2008;16(10): 7161-8. DOI: https://doi.org/10.1364/OE.16.007161

Ta’eed VG, Shokooh-Saremi M, Fu L, Moss DJ, Rochette M, Littler ICM, et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Optics Letters. 2005;30(21):2900-2. DOI: https://doi.org/10.1364/OL.30.002900

Pelusi MD, Luan F, Magi E, Lamont MRE, Moss DJ, Eggleton BJ, et al. High bit rate all-optical signal processing in a fiber photonic wire. Optics Express. 2008;16(15):11506-12. DOI: https://doi.org/10.1364/OE.16.011506

Varshney SK, Saitoh K, Iizawa K, Tsuchida Y, Koshiba M, Sinha RK. Raman amplification characteristics of As2Se3 photonic crystal fibers. Optics Letters. 2008;33(21):2431-3. DOI: https://doi.org/10.1364/OL.33.002431

Fu LB, Rochette M, Ta’eed VG, Moss DJ, Eggleton BJ. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. Optics Express. 2005;13(19):7637-44. DOI: https://doi.org/10.1364/OPEX.13.007637

Florea C, Bashkansky M, Dutton Z, Sanghera J, Pureza P, Aggarwal I. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers. Optics Express. 2006;14(25):12063-70. DOI: https://doi.org/10.1364/OE.14.012063

Dabas B, Sinha RK. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Optics Communications. 2010;283(7):1331-7. DOI: https://doi.org/10.1016/j.optcom.2009.11.091

Su H, Zhang Y, Ma K, Zhao Y, Wang J. High-temperature sensor based on suspended-core microstructured optical fiber. Optics Express. 2019;27(15):20156-64. DOI: https://doi.org/10.1364/OE.27.020156

Rim Cherif , Mourad Zghal. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers. International Journal of Optics. 2013;2013:1-5. DOI: https://doi.org/10.1155/2013/876474

Li F, He M, Zhang X, Chang M, Wu Z, Liu Z, et al. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding. Optical Materials. 2018;79:137-46. DOI: https://doi.org/10.1016/j.optmat.2018.03.025

Mohsin KM, Alam MS, Hasan DMN, Hossain MN. Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber. Applied Optics. 2011;50(25);E102-E7. DOI: https://doi.org/10.1364/AO.50.00E102

Lumerical Eigenmode Expansion (EME) Solver, https://www.lumerical.com/tcad products/mode/EME, accessed 29 August (2016).

Cherif R, Ben Salem A, Zghal M, Besnard P, Chartier T, Brilland L, et al. Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Optical Engineering. 2010;49(9):095002. DOI: https://doi.org/10.1117/1.3488042