Dispersion and Rheological Properties of Alumina/Zirconia Slurries with Methyl Isobutyl Ketone/Ethanol Solvents

Journal of Materials Synthesis and Processing - Tập 10 - Trang 237-244 - 2002
H. C. Park1, S. Y. Yoon1, Y. B. Lee1, B. K. Kim2, R. Stevens3
1School of Materials Science and Engineering, Pusan National University, Pusan, Korea
2School of Environmental, Polymer Science, and Chemical Engineering, Pusan National University, Pusan, Korea
3Department of Applied Science and Engineering, Bath University, Bath, sUK

Tóm tắt

The dispersion and rheological behavior of alumina, zirconia, and alumina/zirconia mixed slurries were investigated using various solvent ratios of methyl isobutyl ketone (MIBK)/ethanol (EtOH), by measuring sedimentation bulk density, particle size distribution, and viscosity. Well-dispersed suspensions were obtained in MIBK-rich solvents with additional dispersant and in EtOH-rich without dispersant. The shear viscosity of the slurries was dependent on both the Al2O3/ZrO2 ratio and MIBK/EtOH ratio. At a constant solvent ratio, however, similar rheological behavior was shown regardless of the relative amounts of the two solids. At low shear rate, a Newtonian plateau was absent in the Al2O3/ZrO2 slurries. With increasing shear rate (>600 s−1), Al2O3 slurries exhibited a Newtonian plateau while ZrO2 demonstrated continuous shear thinning.

Tài liệu tham khảo

N. Claussen, J. Am. Ceram. Soc. 59, 49 (1876). W. C. Moffatt and H. K. Bowen, J. Mater. Sci. 24, 3984 (1989). D. J. Green, J. Am. Ceram. Soc. 65, 610 (1982). D. J. Green, R. H. J. Hannink, and M. V. Swain, Transformation Toughening of Ceramics (CRC Press, Florida, 1989). J. Wang and R. Stevens, J. Mater. Sci. 24, 3421 (1989). R. E. Mistler, D. J. Shanefield, and R. B. Runk, in Ceramic Processing Before Firing: Tape Casting of Ceramics, G. Y. Onoda and L. L. Hench, eds. (Wiley, New York, 1978) pp. 441–448. J. C. Williams, in Ceramic Fabrication Processes: Doctor-Blade Process, F. F. Y. Wang, eds. (Academic Press, New York, 1976) pp. 173–198. R. Moreno, Am. Ceram. Soc. Bull. 71, 1521 (1992). L. Braun, J. R. Morris Jr, and W. R. Cannon, Am. Ceram. Soc. Bull. 64, 727 (1985). P. Boch and T. Chartier, J. Am. Ceram. Soc. 74, 2448 (1991). M. D. Sack and C. S. Khadilkar, J. Am. Ceram. Soc. 66, 488 (1983). P. Boch, T. Chartler, and M. Huttepain, J. Am. Ceram. Soc. 69, C191 (1986). W. R. Cannon, J. R. Morris, and K. R. Mikeska, in Multilayer Ceramic Devices: Dispersion for Nonaqueous Tape Casting, J. B. Blum, eds. (American Ceramic Society, Westerville, 1986) pp. 161–174. H. Reader, C. Simon, T. Chartier, and H. L. Toftegaard, J. Eur. Ceram. Soc. 13, 485 (1994). J. S. Reed, Principles of Ceramic Processing (Wiley, New York, 1995). J. H. Feng and F. Dogan, J. Am. Ceram. Soc. 83, 1681 (2000). A. F. M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters (CRC Press, Florida, 1983). Th. F. Tadros, in Settling of suspensions and prevention of formation of dilatant sediments: Solid/Liquid Dispersions, Th. F. Tadros, eds. (Academic Press, London, 1987) pp. 225–274. J. C. Williams, in Ceramic Fabrication Processes: Doctor-Blade Process, F. F. Y. Wang, eds. (Academic Press, New York, 1976) pp. 173–198. E. S. Tormey, R. L. Pober, H. K. Bowen, and P. D. Calvert, in Forming of Ceramics: Tape Casting-Future Developments, J. A. Mangels, eds. (American Ceramic Society, Westerville, 1984) pp. 140–149. L. Bergstrom, J. Mater. Sci. 31, 5257 (1996).