Dislocation resistance of ProRoot Endo Sealer, a calcium silicate‐based root canal sealer, from radicular dentine

International Endodontic Journal - Tập 42 Số 1 - Trang 34-46 - 2009
Bradford Huffman1, Sui Mai2, Lorenzo A. Pinna3, R. Norman Weller4, Carolyn Primus5, James L. Gutmann6, D.H. Pashley7, Franklin R. Tay4,7
1School of Dentistry, Medical College of Georgia, Augusta, GA, USA
2Guanghua School of Stomatology & Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
3Universita degli Studi di Cagliari, Reparto di Odontoiatria Conservatrice, Sardinia, Italy
4Department of Endodontics, School of Dentistry, Medical College of Georgia, Augusta, GA, USA
5Primus Consulting, Bradenton, FL, USA
6Department of Endodontics, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, TX, USA
7Department of Oral Biology, School of Dentistry, Medical College of Georgia, Augusta, GA USA

Tóm tắt

Abstract

Aim  To examine the dislocation resistance of three root canal sealers from radicular dentine with and without immersion in a simulated body fluid (SBF), using a modified push‐out test design that produced simulated canal spaces of uniform dimensions under identical cleaning and shaping conditions.

Methodology  Sixty single‐rooted caries‐free human canine teeth were used. Standardized simulated canal spaces were created using 0.04 taper ProFile instruments along the coronal, middle and apical thirds of longitudinal tooth slabs. Following NaOCl/ethylenediamine tetra‐acetic acid cleaning, the cavities were filled with ProRoot Endo Sealer, AH Plus Jet or Pulp Canal Sealer. After setting, half of the cavities were tested with a fibre‐optic light‐illuminated push‐out testing device. The rest were immersed in SBF for 4 weeks before push‐out evaluation. Failure modes were examined with stereomicroscopy and field emission (FE)‐scanning electron microscopy.

Results  Location of the sealer‐filled cavities did not affect push‐out strengths. ProRoot Endo Sealer exhibited higher push‐out strengths than the other two sealers particularly after SBF storage (P < 0.001). Failure modes were predominantly adhesive and mixed for Pulp Canal Sealer and AH Plus Jet, and predominantly cohesive for ProRoot Endo Sealer. Spherical amorphous calcium phosphate‐like phases that spontaneously transformed into apatite‐like phases were seen in the fractured specimens of ProRoot Endo Sealer after SBF storage.

Conclusions  When tested in bulk without a main core, both ‘sealer type’ and ‘SBF storage’ were significant in affecting push‐out results. The ProRoot Endo Sealer demonstrated the presence of spherical amorphous calcium phosphate‐like phases and apatite‐like phases (i.e. ex vivo bioactivity) after SBF storage.

Từ khóa


Tài liệu tham khảo

10.1111/j.1747-4477.2000.tb00277.x

10.1016/j.cemconres.2004.03.027

10.1016/j.joen.2007.05.016

Callister WD, 1994, Materials Science and Engineering: an Introduction, 1

10.1111/j.1365-2591.2006.01135.x

10.1016/0266-3538(95)00040-2

10.1016/S1359-835X(00)00051-8

De Moor R, 2000, The importance of apical and coronal leakage in the success or failure of endodontic treatment, Revue Belge de Médecine Dentaire, 55, 334

10.1002/mats.200400018

Eanes ED, 2001, Monographs in Oral Science, 130

10.1002/app.10447

10.1016/j.joen.2007.02.011

10.1007/BF02509540

10.1016/j.joen.2006.03.004

10.1097/01.don.0000158230.15853.b7

10.1016/S0099-2399(07)80155-5

10.1097/01.don.0000153841.23594.91

10.1016/j.jdent.2007.07.009

10.1002/jbm.b.30203

He RX, 2007, Position of the prosthesis and the incidence of dislocation following total hip replacement, Chinese Medical Journal (English), 120, 1140, 10.1097/00029330-200707010-00005

10.1111/j.1151-2916.1991.tb07132.x

Hench LL, 1978, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research, 2, 117

10.1097/00004770-200005000-00011

10.1111/j.1365-2591.2007.01308.x

10.1271/bbb.67.1492

10.1046/j.1365-2591.2000.00308.x

10.1016/S0008-8846(02)00783-4

10.1097/00004770-200210000-00002

10.1097/00003086-200202000-00009

10.1016/S0099-2399(88)80135-3

Marques JMM, 2005, VIII International Conference on Computational Plasticity COMPLAS VIII, 1

10.1016/0168-874X(95)00036-S

10.1016/0109-5641(94)90046-9

10.1016/j.joen.2007.02.007

10.1016/j.joen.2007.07.028

10.1016/S0099-2399(06)81095-2

10.1002/jbm.a.31412

10.1097/01.DON.0000129039.59003.9D

10.1097/00004770-200309000-00013

10.1097/01.don.0000145031.04236.ca

10.1097/01.DON.0000133155.04468.41

10.1016/S0268-0033(99)00054-6

10.1115/1.2895434

10.1115/1.2891366

10.1016/j.joen.2006.03.020

10.1016/j.joen.2006.09.014

10.1111/j.1365-2591.2005.01027.x

10.1097/00004770-200303000-00007

10.1016/S0099-2399(99)80004-1

10.1016/j.biomaterials.2007.11.001

10.1016/j.joen.2007.07.008

10.14219/jada.archive.2006.0323

10.1097/01.DON.0000125874.80753.F3

10.1097/00004770-200103000-00005

10.1002/pc.10232

10.1111/j.1365-2591.2006.01132.x

10.1111/j.1365-2591.2007.01342.x

10.1111/j.1365-2591.1993.tb00786.x

10.1016/j.dental.2007.02.006

10.1054/arth.2002.31246

10.1111/j.1365-2591.1990.tb00797.x

10.1016/j.biomaterials.2005.04.025