Discrimination of maturity of Camellia oleifera fruit on-site based on generative adversarial network and hyperspectral imaging technique
Tóm tắt
Từ khóa
Tài liệu tham khảo
N. Tang, X. Tan, Y. Cai, M. He, Z. Xiang, H. Ye, J. Ma, Characterizations and application potentials of the hemicelluloses in waste oil-tea camellia fruit shells from Southern China. Ind. Crops Prod. (2022). https://doi.org/10.1016/J.INDCROP.2022.114551
B. Wu, C.J. Ruan, P. Han, R. Dong, C.W. Xiong, J. Ding, S. Liu, Comparative transcriptomic analysis of high- and low-oil Camellia oleifera reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation. 3 Biotech 9(7), 257 (2019). https://doi.org/10.1007/s13205-019-1792-7
F. Luan, J.S. Zeng, Y. Yang, X.R. He, B.J. Wang, Y.B. Gao, N. Zeng, Recent advances in Camellia oleifera Abel: a review of nutritional constituents, biofunctional properties, and potential industrial applications. J. Funct. Foods 75, 104242 (2020). https://doi.org/10.1016/j.jff.2020.104242
S. Gao, B.F. Wang, F.D. Liu, J.R. Zhao, J. Yuan, S.X. Xiao, J. Masabni, F. Zou, D.Y. Yuan, Variation in fruit morphology and seed oil fatty acid composition of Camellia oleifera collected from diverse regions in Southern China. Horticulturae 8(9), 818 (2022). https://doi.org/10.3390/HORTICULTURAE8090818
Y.F. Lu, Y.Y. Si, L.Y. Zhang, Y.J. Sun, S.C. Su, Effects of canopy position and microclimate on fruit development and quality of Camellia oleifera. Agronomy 12(9), 2158 (2022). https://doi.org/10.3390/AGRONOMY12092158
X.Y. Zhu, D.Y. Shen, R.P. Wang, Y.L. Zheng, S.C. Su, F.J. Chen, Maturity grading and identification of Camellia oleifera fruit based on unsupervised image clustering. Foods 11(23), 3800 (2022). https://doi.org/10.3390/FOODS11233800
Y. Wen, S.C. Su, L.Y. Ma, S.Y. Yang, Y.W. Wang, X.N. Wang, Effects of canopy microclimate on fruit yield and quality of Camellia oleifera. Sci. Hortic. 235, 132–141 (2018). https://doi.org/10.1016/j.scienta.2017.12.042
F. Mraicha, M. Ksantini, O. Zouch, M. Ayadi, S. Sayadi, M. Bouaziz, Effect of olive fruit fly infestation on the quality of olive oil from Chemlali cultivar during ripening. Food Chem. Toxicol. 48(11), 3235–3241 (2010). https://doi.org/10.1016/j.fct.2010.08.031
Q.L. Song, K. Ji, W.J. Mo, L.K. Wang, L. Chen, L. Gao, W.F. Gong, D.Y. Yuan, Dynamics of sugars, endogenous hormones, and oil content during the development of Camellia oleifera fruit. Botany 99(8), 515–529 (2021). https://doi.org/10.1139/CJB-2021-0019
X.P. Li, H.Z. Jiang, X.S. Jiang, M.H. Shi, Identification of geographical origin of Chinese chestnuts using hyperspectral imaging with 1D-CNN algorithm. Agriculture 11(12), 1274 (2021). https://doi.org/10.3390/AGRICULTURE11121274
H.Z. Jiang, Y.L. Hu, X.S. Jiang, H.P. Zhou, Maturity stage discrimination of Camellia oleifera fruit using visible and near-infrared hyperspectral imaging. Molecules 27(19), 6318 (2022). https://doi.org/10.3390/MOLECULES27196318
G.T. Xuan, C. Gao, Y.Y. Shao, X.Y. Wang, Y.X. Wang, K.L. Wang, Maturity determination at harvest and spatial assessment of moisture content in okra using Vis–NIR hyperspectral imaging. Postharvest Biol. Technol. (2021). https://doi.org/10.1016/J.POSTHARVBIO.2021.111597
H. Xiao, A. Li, M.Y. Li, Y. Sun, K. Tu, S.J. Wang, L.Q. Pan, Quality assessment and discrimination of intact white and red grapes from Vitis vinifera L. at five ripening stages by visible and near-infrared spectroscopy. Sci. Hortic. 233, 99–107 (2018). https://doi.org/10.1016/j.scienta.2018.01.041
C. Zhang, C. Guo, F. Liu, W. Kong, Y. He, B. Lou, Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 179, 11–18 (2016). https://doi.org/10.1016/j.jfoodeng.2016.01.002
T. Achiraya, S. Supawan, T.A. Keith, T. Sontisuk, Nondestructive evaluation of SW-NIRS and NIR-HSI for predicting the maturity index of intact pineapples. Postharvest Biol. Technol. (2022). https://doi.org/10.1016/J.POSTHARVBIO.2022.112141
X. Chu, P. Miao, K. Zhang, H.Y. Wei, H. Fu, H.L. Liu, H.Z. Jiang, Z.Y. Ma, Green banana maturity classification and quality evaluation using hyperspectral imaging. Agriculture 12(4), 530 (2022). https://doi.org/10.3390/AGRICULTURE12040530
C. Yang, W.S. Lee, P. Gader, Hyperspectral band selection for detecting different blueberry fruit maturity stages. Comput. Electron. Agric. 109, 23–31 (2014). https://doi.org/10.1016/j.compag.2014.08.009
A. Benelli, C. Cevoli, A. Fabbri, L. Ragni, Ripeness evaluation of kiwifruit by hyperspectral imaging. Biosyst. Eng. (2021). https://doi.org/10.1016/J.BIOSYSTEMSENG.2021.08.009
Y.Y. Shao, Y.X. Wang, G.T. Xuan, In-field and non-invasive determination of internal quality and ripeness stages of Feicheng peach using a portable hyperspectral imager. Biosyst. Eng. 212, 115–125 (2021). https://doi.org/10.1016/J.BIOSYSTEMSENG.2021.10.004
A. Benelli, C. Cevoli, L. Ragni, A. Fabbri, In-field and non-destructive monitoring of grapes maturity by hyperspectral imaging. Biosyst. Eng. 207, 59–67 (2021). https://doi.org/10.1016/J.BIOSYSTEMSENG.2021.04.006
Y.Y. Shao, Y.X. Wang, G.T. Xuan, Z.M. Gao, Z.C. Hu, C. Gao, K.L. Wang, Assessment of strawberry ripeness using hyperspectral imaging. Anal. Lett. 54(10), 1547–1560 (2020). https://doi.org/10.1080/00032719.2020.1812622
B.K. Alsberg, M.K. Winson, J. Rowland, D.B. Kell, A.M. Woodward, Wavelet denoising of infrared spectra. Analyst 122(7), 645–652 (1997). https://doi.org/10.1039/A608255F
H. Li, Q.Z. Lin, Q.J. Wang, Q.J. Liu, J.Z. Wu, Research on spectrum denoising methods based on the combination of wavelet package transformation and mathematical morphology. Spectrosc. Spect. Anal. 30(3), 644–648 (2010)
G.Y. Chen, E.Q. Shen, Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 49(3), 973–980 (2011)
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, Generative adversarial nets, in Proceedings of the 27th International Conference on Neural Information Processing Systems (2014), pp. 2672–2680
B. Yang, C. Chen, F.F. Chen, C. Chen, J. Tang, R. Gao, X.Y. Lv, Identification of cumin and fennel from different regions based on generative adversarial networks and near infrared spectroscopy. Spectrochim. Acta A 260, 119956–119956 (2021). https://doi.org/10.1016/J.SAA.2021.119956
K. Lin, T.H. Li, S. Liu, G. Li, Real photographs denoising with noise domain adaptation and attentive generative adversarial network, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
K. Lin, T.H. Li, S. Liu, G. Li, Low-dose CT image denoising using cycle-consistent adversarial networks, in Proceedings of the IEEE Conference on Nuclear Science Symposium and Medical Imaging (2019). https://doi.org/10.1109/NSS/MIC42101.2019.9059965
Z.Y. Huang, Z.X. Chen, Q.Y. Zhang et al., CaGAN: a cycle-consistent generative adversarial network with attention for low-dose CT imaging. IEEE Trans. Comput. Imaging 99, 1 (2020). https://doi.org/10.1109/tci.2020.3012928
J.J. Zhou, H.K. Xu, Z.F. Zhang, J.K. Lu, W.T. Guo, Z.Y. Li, Using recurrent neural network structure and multi-head attention with convolution for fraudulent phone text recognition. Comput. Syst. Sci. Eng. 46(2), 2277–2297 (2023). https://doi.org/10.32604/CSSE.2023.0
X.T. Wang, K. Yu, S.X. Wu, J.J. Gu, Y.H. Liu, C. Dong, C.C. Loy, Y. Qiao, X.O. Tang, ESRGAN: enhanced super-resolution generative adversarial networks. CoRR (2018). https://doi.org/10.1007/978-3-030-11021-5_5
H.Z. Jiang, X.S. Jiang, Y. Ru, Q. Chen, X.P. Li, L.Y. Xu, H.P. Zhou, M.H. Shi, Rapid and non-destructive detection of natural mildew degree of postharvest Camellia oleifera fruit based on hyperspectral imaging. Infrared Phys. Technol. (2022). https://doi.org/10.1016/J.INFRARED.2022.104169
A. Siedliska, P. Baranowski, W. Mazurek, Classification models of bruise and cultivar detection on the basis of hyperspectral imaging data. Comput. Electron. Agric. 106, 66–74 (2014). https://doi.org/10.1016/j.compag.2014.05.012