Discovering the evolution of online reviews: A bibliometric review

Electronic Markets - Tập 33 - Trang 1-22 - 2023
Yucheng Zhang1, Zhiling Wang1, Lin Xiao2, Lijun Wang3, Pei Huang4
1School of Economics and Management, Hebei University of Technology, Tianjin, China
2College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
3School of Business, East China University of Science and Technology, Shanghai, China
4School of Art and Science, University of Rochester, Rochester, USA

Tóm tắt

As a rapidly developing topic, online reviews have aroused great interest among researchers. Although the existing research can help to explain issues related to online reviews, the scattered and diversified nature of previous research hinders an overall understanding of this area. Based on bibliometrics, this study analyzes 3089 primary articles and 100,783 secondary articles published between 2003 and 2022. We comprehensively and objectively describe the development status of online reviews, show the evolutionary process of the knowledge structure of online reviews, and suggest research directions based on the analysis results. This article validates and expands previous literature reviews, helps scholars understand relevant knowledge about online reviews, and contributes to the development of online reviews.

Tài liệu tham khảo

Abubakar, A. M., & Ilkan, M. (2016). Impact of online WOM on destination trust and intention to travel: A medical tourism perspective. Journal of Destination Marketing & Management, 5(3), 192–201. https://doi.org/10.1016/j.jdmm.2015.12.005 Ahani, A., Nilashi, M., Yadegaridehkordi, E., Sanzogni, L., Tarik, A. R., Knox, K., & Ibrahim, O. (2019). Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services, 51, 331–343. https://doi.org/10.1016/j.jretconser.2019.06.014 Allee, V. (2012). The knowledge evolution: Expanding organizational intelligence. Routledge. https://doi.org/10.4324/9780080509808 Anderson, E. W. (1998). Customer satisfaction and word of mouth. Journal of Service Research, 1(1), 5–17. https://doi.org/10.1177/109467059800100102 Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research, 4(3), 291–295. https://doi.org/10.1177/002224376700400308 Babić Rosario, A., Sotgiu, F., De Valck, K., & Bijmolt, T. H. (2016). The effect of electronic word of mouth on sales: A meta-analytic review of platform, product, and metric factors. Journal of Marketing Research, 53(3), 297–318. https://doi.org/10.1509/jmr.14.0380 Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers’ objectives and review cues. International Journal of Electronic Commerce, 17(2), 99–126. https://doi.org/10.2753/jec1086-4415170204 Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. https://doi.org/10.1007/bf02723327 Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173 Berger, J. (2014). Word of mouth and interpersonal communication: A review and directions for future research. Journal of Consumer Psychology, 24(4), 586–607. https://doi.org/10.1016/j.jcps.2014.05.002 Berger, J., & Heath, C. (2007). Where consumers diverge from others: Identity signaling and product domains. Journal of Consumer Research, 34(2), 121–134. https://doi.org/10.1086/519142 Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192–205. https://doi.org/10.1509/jmr.10.0353 Boumans, J. W., & Trilling, D. (2016). Taking stock of the toolkit: An overview of relevant automated content analysis approaches and techniques for digital journalism scholars. Digital Journalism, 4(1), 8–23. https://doi.org/10.1080/21670811.2015.1096598 Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for information Science and Technology, 61(12), 2389–2404. https://doi.org/10.1002/asi.21419 Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878 Brown, J. J., & Reingen, P. H. (1987). Social ties and word-of-mouth referral behavior. Journal of Consumer Research, 14(3), 350–362. https://doi.org/10.1086/209118 Brown, J., Broderick, A. J., & Lee, N. (2007). Word of mouth communication within online communities: Conceptualizing the online social network. Journal of Interactive Marketing, 21(3), 2–20. https://doi.org/10.1002/dir.20082 Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for information Science and Technology, 57(3), 359–377. https://doi.org/10.1002/asi.20317 Chen, Y., & Xie, J. (2008). Online consumer review: Word-of-mouth as a new element of marketing communication mix. Management Science, 54(3), 477–491. https://doi.org/10.1287/mnsc.1070.0810 Chen, Y.-F., & Law, R. (2016). A review of research on electronic word-of-mouth in hospitality and tourism management. International Journal of Hospitality & Tourism Administration, 17(4), 347–372. https://doi.org/10.1080/15256480.2016.1226150 Chen, Y., Wang, Q., & Xie, J. (2011). Online social interactions: A natural experiment on word of mouth versus observational learning. Journal of Marketing Research, 48(2), 238–254. https://doi.org/10.1509/jmkr.48.2.238 Cheung, C. M., Chan, G. W., & Limayem, M. (2005). A critical review of online consumer behavior: Empirical research. Journal of Electronic Commerce in Organizations (JECO), 3(4), 1–19. https://doi.org/10.4018/jeco.2005100101 Cheung, M. Y., Luo, C., Sia, C. L., & Chen, H. (2009). Credibility of electronic word-of-mouth: Informational and normative determinants of on-line consumer recommendations. International Journal of Electronic Commerce, 13(4), 9–38. https://doi.org/10.2753/JEC1086-4415130402 Cheung, C. M., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470. https://doi.org/10.1016/j.dss.2012.06.008 Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345–354. https://doi.org/10.1509/jmkr.43.3.345 Chintagunta, P. K., Gopinath, S., & Venkataraman, S. (2010). The effects of online user reviews on movie box office performance: Accounting for sequential rollout and aggregation across local markets. Marketing Science, 29(5), 944–957. https://doi.org/10.1287/mksc.1100.0572 Choi, J., Yi, S., & Lee, K. C. (2011). Analysis of keyword networks in MIS research and implications for predicting knowledge evolution. Information & Management, 48(8), 371–381. https://doi.org/10.1016/j.im.2011.09.004 Chong, A. Y. L., Ch’ng, E., Liu, M., & Li, B. (2017). Predicting consumer product demands via big data: The roles of online promotional marketing and online reviews. International Journal of Production Research, 55(17), 5142–5156. https://doi.org/10.1080/00207543.2015.1066519 Chu, S.-C., & Kim, Y. (2011). Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. International Journal of Advertising, 30(1), 47–75. https://doi.org/10.2501/IJA-30-1-047-075 Chu, S.-C., & Kim, J. (2018). The current state of knowledge on electronic word-of-mouth in advertising research. International Journal of Advertising, 37(1), 1–13. https://doi.org/10.1080/02650487.2017.1407061 Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002 Darley, W. K., Blankson, C., & Luethge, D. J. (2010). Toward an integrated framework for online consumer behavior and decision making process: A review. Psychology & Marketing, 27(2), 94–116. https://doi.org/10.1002/mar.20322 Daugherty, T., & Hoffman, E. (2014). eWOM and the importance of capturing consumer attention within social media. Journal of Marketing Communications, 20(1–2), 82–102. https://doi.org/10.1080/13527266.2013.797764 Davari, D., Vayghan, S., Jang, S., & Erdem, M. (2022). Hotel experiences during the COVID-19 pandemic: High-touch versus high-tech. International Journal of Contemporary Hospitality Management, 34(4), 1312–1330. https://doi.org/10.1108/IJCHM-07-2021-0919 De Matos, C. A., & Rossi, C. A. V. (2008). Word-of-mouth communications in marketing: A meta-analytic review of the antecedents and moderators. Journal of the Academy of Marketing Science, 36(4), 578–596. https://doi.org/10.1007/s11747-008-0121-1 Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10), 1407–1424. https://doi.org/10.1287/mnsc.49.10.1407.17308 Dellarocas, C., Zhang, X. M., & Awad, N. F. (2007). Exploring the value of online product reviews in forecasting sales: The case of motion pictures. Journal of Interactive Marketing, 21(4), 23–45. https://doi.org/10.1002/dir.20087 Dichter, E. (1966). How word-of-mouth advertising works. Harvard Business Review, 44, 147–166. https://doi.org/10.2307/254956 Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 Duan, W., Gu, B., & Whinston, A. B. (2008a). Do online reviews matter?—An empirical investigation of panel data. Decision Support Systems, 45(4), 1007–1016. https://doi.org/10.1016/j.dss.2008.04.001 Duan, W., Gu, B., & Whinston, A. B. (2008b). The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. Journal of Retailing, 84(2), 233–242. https://doi.org/10.1016/j.jretai.2008.04.005 Fader, P. S., & Winer, R. S. (2012). Introduction to the special issue on the emergence and impact of user-generated content. Marketing Science, 31(3), 369–371. https://doi.org/10.1287/mksc.1120.0715 Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261–1270. https://doi.org/10.1016/j.jbusres.2014.11.006 Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291–313. https://doi.org/10.1287/isre.1080.0193 Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104 Fresneda, J. E., & Gefen, D. (2019). A semantic measure of online review helpfulness and the importance of message entropy. Decision Support Systems, 125, 113117. https://doi.org/10.1016/j.dss.2019.113117 Gerdt, S.-O., Wagner, E., & Schewe, G. (2019). The relationship between sustainability and customer satisfaction in hospitality: An explorative investigation using eWOM as a data source. Tourism Management, 74, 155–172. https://doi.org/10.1016/j.tourman.2019.02.010 Ghose, A., & Ipeirotis, P. G. (2010). Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498–1512. https://doi.org/10.1109/TKDE.2010.188 Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science, 23(4), 545–560. https://doi.org/10.1287/mksc.1040.0071 Godes, D., & Mayzlin, D. (2009). Firm-created word-of-mouth communication: Evidence from a field test. Marketing Science, 28(4), 721–739. https://doi.org/10.1287/mksc.1080.0444 Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380. https://doi.org/10.1086/225469 Grégoire, D. A., Noel, M. X., Déry, R., & Béchard, J. P. (2006). Is there conceptual convergence in entrepreneurship research? A co–citation analysis of frontiers of entrepreneurship research, 1981–2004. Entrepreneurship Theory and Practice, 30(3), 333–373. https://doi.org/10.1111/j.1540-6520.2006.00124.x Gruen, T. W., Osmonbekov, T., & Czaplewski, A. J. (2006). eWOM: The impact of customer-to-customer online know-how exchange on customer value and loyalty. Journal of Business Research, 59(4), 449–456. https://doi.org/10.1016/j.jbusres.2005.10.004 Guan, C., Hung, Y.-C., & Liu, W. (2022). Cultural differences in hospitality service evaluations: Mining insights of user generated content. Electronic Markets, 32(3), 1061–1081. https://doi.org/10.1007/s12525-022-00545-z Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467–483. https://doi.org/10.1016/j.tourman.2016.09.009 Hennig-Thurau, T., & Walsh, G. (2003). Electronic word-of-mouth: Motives for and consequences of reading customer articulations on the Internet. International Journal of Electronic Commerce, 8(2), 51–74. https://doi.org/10.1080/10864415.2003.11044293 Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18(1), 38–52. https://doi.org/10.1002/dir.10073 Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. Journal of Consumer research, 17(4), 454–462. https://doi.org/10.1086/208570 Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201–214. https://doi.org/10.1007/s10799-008-0041-2 Huete-Alcocer, N. (2017). A literature review of word of mouth and electronic word of mouth: Implications for consumer behavior. Frontiers in Psychology, 8, 1256. https://doi.org/10.3389/fpsyg.2017.01256 Jalilvand, M. R., & Samiei, N. (2012). The impact of electronic word of mouth on a tourism destination choice. Internet Research, 22(5), 591–612. https://doi.org/10.1108/10662241211271563 Jia, S. S. (2020). Motivation and satisfaction of Chinese and US tourists in restaurants: A cross-cultural text mining of online reviews. Tourism Management, 78, 104071. https://doi.org/10.1016/j.tourman.2019.104071 Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003 King, R. A., Racherla, P., & Bush, V. D. (2014). What we know and don’t know about online word-of-mouth: A review and synthesis of the literature. Journal of Interactive Marketing, 28(3), 167–183. https://doi.org/10.1016/j.intmar.2014.02.001 Korfiatis, N., García-Bariocanal, E., & Sánchez-Alonso, S. (2012). Evaluating content quality and helpfulness of online product reviews: The interplay of review helpfulness vs. review content. Electronic Commerce Research and Applications, 11(3), 205–217. https://doi.org/10.1016/j.elerap.2011.10.003 Kozinets, R. V., De Valck, K., Wojnicki, A. C., & Wilner, S. J. (2010). Networked narratives: Understanding word-of-mouth marketing in online communities. Journal of Marketing, 74(2), 71–89. https://doi.org/10.1509/jm.74.2.71 Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., & Liguori, E. (2022). Literature reviews as independent studies: Guidelines for academic practice. Review of Managerial Science, 16(8), 2577–2595. https://doi.org/10.1007/s11846-022-00588-8 Kumar, S., Lim, W. M., Pandey, N., & Christopher Westland, J. (2021). 20 years of electronic commerce research. Electronic Commerce Research, 21, 1–40. https://doi.org/10.1007/s10660-021-09464-1 Kwok, L., Xie, K. L., & Richards, T. (2017). Thematic framework of online review research: A systematic analysis of contemporary literature on seven major hospitality and tourism journals. International Journal of Contemporary Hospitality Management., 29(1), 307–354. https://doi.org/10.1108/IJCHM-11-2015-0664 Lee, J., Park, D.-H., & Han, I. (2008). The effect of negative online consumer reviews on product attitude: An information processing view. Electronic Commerce Research and Applications, 7(3), 341–352. https://doi.org/10.1016/j.elerap.2007.05.004 Lee, D., Ng, P. M., & Bogomolova, S. (2020). The impact of university brand identification and eWOM behaviour on students’ psychological well-being: A multi-group analysis among active and passive social media users. Journal of Marketing Management, 36(3–4), 384–403. https://doi.org/10.1080/0267257X.2019.1702082 Leung, X. Y., Sun, J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35–45. https://doi.org/10.1016/j.ijhm.2017.06.012 Lim, W. M. (2022). Ushering a new era of Global Business and Organizational Excellence: Taking a leaf out of recent trends in the new normal. Global Business and Organizational Excellence, 41(5), 5–13. https://doi.org/10.1002/joe.22163 Lim, W. M., Rasul, T., Kumar, S., & Ala, M. (2021a). Past, present, and future of customer engagement. Journal of Business Research, 140, 439–458. https://doi.org/10.1016/j.jbusres.2021.11.014 Lim, W. M., Yap, S.-F., & Makkar, M. (2021b). Home sharing in marketing and tourism at a tipping point: What do we know, how do we know, and where should we be heading? Journal of Business Research, 122, 534–566. https://doi.org/10.1016/j.jbusres.2020.08.051 Lim, W. M., Kumar, S., & Ali, F. (2022). Advancing knowledge through literature reviews: ‘What’, ‘why’, and ‘how to contribute.’ The Service Industries Journal, 42(7–8), 481–513. https://doi.org/10.1080/02642069.2022.2047941 Lim, W. M., Kumar, S., Pandey, N., Verma, D., & Kumar, D. (2023). Evolution and trends in consumer behaviour: Insights from journal of consumer behaviour. Journal of Consumer Behaviour, 22(1), 217–232. https://doi.org/10.1002/cb.2118 Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74–89. https://doi.org/10.1509/jmkg.70.3.074 Liu, F., Lai, K.-H., Wu, J., & Duan, W. (2021). Listening to online reviews: A mixed-methods investigation of customer experience in the sharing economy. Decision Support Systems, 149, 113609. https://doi.org/10.1016/j.dss.2021.113609 Ludwig, S., De Ruyter, K., Friedman, M., Brüggen, E. C., Wetzels, M., & Pfann, G. (2013). More than words: The influence of affective content and linguistic style matches in online reviews on conversion rates. Journal of Marketing, 77(1), 87–103. https://doi.org/10.1509/jm.11.0560 Luo, Y., & Xu, X. (2021). Comparative study of deep learning models for analyzing online restaurant reviews in the era of the COVID-19 pandemic. International Journal of Hospitality Management, 94, 102849. https://doi.org/10.1016/j.ijhm.2020.102849 Mariani, M. M., & Borghi, M. (2020). Online review helpfulness and firms’ financial performance: An empirical study in a service industry. International Journal of Electronic Commerce, 24(4), 421–449. https://doi.org/10.1080/10864415.2020.1806464 Mariani, M. M., Borghi, M., & Laker, B. (2023). Do submission devices influence online review ratings differently across different types of platforms? A big data analysis. Technological Forecasting and Social Change, 189, 122296. https://doi.org/10.1016/j.techfore.2022.122296 Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt. https://doi.org/10.1093/aje/kwu085 Mayrhofer, M., Matthes, J., Einwiller, S., & Naderer, B. (2020). User generated content presenting brands on social media increases young adults’ purchase intention. International Journal of Advertising, 39(1), 166–186. https://doi.org/10.1080/02650487.2019.1596447 Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of Marketing, 58(3), 20–38. https://doi.org/10.1177/002224299405800302 Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS Quarterly, 34(1), 185–200. https://doi.org/10.2307/20721420 Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115. https://doi.org/10.1016/j.jbusres.2022.04.042 Müller, J., & Christandl, F. (2019). Content is king–But who is the king of kings? The effect of content marketing, sponsored content & user-generated content on brand responses. Computers in Human Behavior, 96, 46–55. https://doi.org/10.1016/j.chb.2019.02.006 Nejad, M. G., Amini, M., & Sherrell, D. L. (2016). The profit impact of revenue heterogeneity and assortativity in the presence of negative word-of-mouth. International Journal of Research in Marketing, 33(3), 656–673. https://doi.org/10.1016/j.ijresmar.2015.11.005 Palese, B., Piccoli, G., & Lui, T.-W. (2021). Effective use of online review systems: Congruent managerial responses and firm competitive performance. International Journal of Hospitality Management, 96, 102976. https://doi.org/10.1016/j.ijhm.2021.102976 Park, D.-H., Lee, J., & Han, I. (2007). The effect of on-line consumer reviews on consumer purchasing intention: The moderating role of involvement. International Journal of Electronic Commerce, 11(4), 125–148. https://doi.org/10.2753/JEC1086-4415110405 Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). International Journal of Consumer Studies, 45(4), O1–O16. https://doi.org/10.1111/ijcs.12695 Picazo-Vela, S., Chou, S. Y., Melcher, A. J., & Pearson, J. M. (2010). Why provide an online review? An extended theory of planned behavior and the role of Big-Five personality traits. Computers in Human Behavior, 26(4), 685–696. https://doi.org/10.1016/j.chb.2010.01.005 Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879 Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25(4), 348–349. Qin, L. (2011). Word-of-blog for movies: A predictor and an outcome of box office revenue? Journal of Electronic Commerce Research, 12(3), 187–198. Rese, A., Schreiber, S., & Baier, D. (2014). Technology acceptance modeling of augmented reality at the point of sale: Can surveys be replaced by an analysis of online reviews? Journal of Retailing and Consumer Services, 21(5), 869–876. https://doi.org/10.1016/j.jretconser.2014.02.011 Reyes-Gonzalez, L., Gonzalez-Brambila, C. N., & Veloso, F. (2016). Using co-authorship and citation analysis to identify research groups: A new way to assess performance. Scientometrics, 108(3), 1171–1191. https://doi.org/10.1007/s11192-016-2029-8 Rimé, B. (2009). Emotion elicits the social sharing of emotion: Theory and empirical review. Emotion Review, 1(1), 60–85. https://doi.org/10.1177/1754073908097189 Ruths, D., & Pfeffer, J. (2014). Social media for large studies of behavior. Science, 346(6213), 1063–1064. https://doi.org/10.1126/science.346.6213.1063 Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30–40. https://doi.org/10.1016/j.dss.2015.10.006 Schuckert, M., Liu, X., & Law, R. (2015). Hospitality and tourism online reviews: Recent trends and future directions. Journal of Travel & Tourism Marketing, 32(5), 608–621. https://doi.org/10.1080/10548408.2014.933154 Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative consumer reviews on the web. Journal of Interactive Marketing, 21(4), 76–94. https://doi.org/10.1002/dir.20090 Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159–169. https://doi.org/10.1016/j.jretai.2004.04.001 Singh, A., Lim, W. M., Jha, S., Kumar, S., & Ciasullo, M. V. (2023). The state of the art of strategic leadership. Journal of Business Research, 158, 113676. https://doi.org/10.1016/j.jbusres.2023.113676 Sinkovics, R. R., & Sinkovics, N. (2016). Enhancing the foundations for theorising through bibliometric mapping. International Marketing Review, 33(3), 327–350. https://doi.org/10.1108/IMR-10-2014-0341 Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265–269. https://doi.org/10.1002/asi.4630240406 Soares, J. C., Limongi, R., De Sousa Júnior, J. H., Santos, W. S., Raasch, M., & Hoeckesfeld, L. (2022). Assessing the effects of COVID-19-related risk on online shopping behavior. Journal of Marketing Analytics, 11, 82–94. https://doi.org/10.1057/s41270-022-00156-9 Stamolampros, P., Korfiatis, N., Chalvatzis, K., & Buhalis, D. (2019). Job satisfaction and employee turnover determinants in high contact services: Insights from employees’ online reviews. Tourism Management, 75, 130–147. https://doi.org/10.1016/j.tourman.2019.04.030 Su, H.-N., & Lee, P.-C. (2010). Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics, 85(1), 65–79. https://doi.org/10.1007/s11192-010-0259-8 Sundaram, D. S., Mitra, K., & Webster, C. (1998). Word-of-mouth communications: A motivational analysis. In J. W. Alba, & J. W. Hutchinson (Eds.), Advances in Consumer Research (Vol. 25, pp. 527–531). Provo. Tankovska, H. (2021). Number of social network users worldwide from 2017 to 2025(in billions) https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ Thorson, K. S., & Rodgers, S. (2006). Relationships between blogs as eWOM and interactivity, perceived interactivity, and parasocial interaction. Journal of Interactive Advertising, 6(2), 5–44. https://doi.org/10.1080/15252019.2006.10722117 Timoshenko, A., & Hauser, J. R. (2019). Identifying customer needs from user-generated content. Marketing Science, 38(1), 1–20. https://doi.org/10.1287/mksc.2018.1123 Trusov, M., Bucklin, R. E., & Pauwels, K. (2009). Effects of word-of-mouth versus traditional marketing: Findings from an internet social networking site. Journal of Marketing, 73(5), 90–102. https://doi.org/10.1509/jmkg.73.5.90 Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3 Vermeulen, I. E., & Seegers, D. (2009). Tried and tested: The impact of online hotel reviews on consumer consideration. Tourism Management, 30(1), 123–127. https://doi.org/10.1016/j.tourman.2008.04.008 Vošner, H. B., Kokol, P., Bobek, S., Železnik, D., & Završnik, J. (2016). A bibliometric retrospective of the journal computers in human behavior (1991–2015). Computers in Human Behavior, 65, 46–58. https://doi.org/10.1016/j.chb.2016.08.026 Wu, P. F. (2019). Motivation crowding in online product reviewing: A qualitative study of Amazon reviewers. Information & Management, 56(8), 103163. https://doi.org/10.1016/j.im.2019.04.006 Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51–65. https://doi.org/10.1016/j.tourman.2016.10.001 Xie, K. L., Zhang, Z., & Zhang, Z. (2014). The business value of online consumer reviews and management response to hotel performance. International Journal of Hospitality Management, 43, 1–12. https://doi.org/10.1016/j.ijhm.2014.07.007 Yang, Y., Wang, C.-C., & Lai, M.-C. (2012). Using bibliometric analysis to explore research trend of electronic word-of-mouth from 1999 to 2011. International Journal of Innovation, Management and Technology, 3(4), 337–342. https://doi.org/10.7763/IJIMT.2012.V3.250 Yeap, J. A., Ignatius, J., & Ramayah, T. (2014). Determining consumers’ most preferred eWOM platform for movie reviews: A fuzzy analytic hierarchy process approach. Computers in Human Behavior, 31, 250–258. https://doi.org/10.1016/j.chb.2013.10.034 Yin, D., Bond, S. D., & Zhang, H. (2014). Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews. MIS Quarterly, 38(2), 539–560. https://doi.org/10.25300/MISQ/2014/38.2.10 You, Y., Vadakkepatt, G. G., & Joshi, A. M. (2015). A meta-analysis of electronic word-of-mouth elasticity. Journal of Marketing, 79(2), 19–39. https://doi.org/10.1509/jm.14.0169 Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111–121. https://doi.org/10.1016/j.ijhm.2018.03.017 Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing, 74(2), 133–148. https://doi.org/10.1509/jm.74.2.133 Zhu, J., Song, L. J., Zhu, L., & Johnson, R. E. (2019). Visualizing the landscape and evolution of leadership research. The Leadership Quarterly, 30(2), 215–232. https://doi.org/10.1016/j.leaqua.2018.06.003 Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629