Dirichlet‐multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aitchison J., 1982, The statistical analysis of compositional data
Gloor G. B., 2017, Microbiome datasets are compositional: And this is not optional, Frontiers in Microbiology, 8
Grantham N. S. Guan Y. Reich B. J. Borer E. T. &Gross K.. (2019).MIMIX: a Bayesian mixed‐effects model for microbiome data from designed experiments. Journal of the American Statistical Association.https://doi.org/10.1080/01621459.2019.1626242
Harrison J. G. Calder W. J. Shastry V. &Buerkle C. A.(2019).Scripts from ‘Dirichlet multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data’.https://doi.org/10.5281/zenodo.3558682. Zenodo.
Hoffman M. D., 2014, The no‐U‐turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research, 15, 1593
Jacobs N. M., 1979, Acute Haemophilus pneumonia in childhood, American Journal of Diseases of Children, 133, 603
Kruschke J., 2015, Doing Bayesian data analysis: A tutorial with R, jags, and stan
Kucukelbir A., 2015, Advances in neural information processing systems, 568
Mandal S., 2015, Analysis of composition of microbiomes: A novel method for studying microbial composition, Microbial Ecology in Health and Disease, 26, 27663
Plummer M., 2003, Proceedings of the 3rd international workshop on distributed statistical computing, 10
Plummer M.(2015).rjags: Bayesian graphical models using MCMC. R package version 3‐15.https://CRAN.R-project.org/package=rjags
Quinn T. P., 2018, Understanding sequencing data as compositions: An outlook and review, bioRxiv, 34, 2870
R Core Team, 2019, R: A language and environment for statistical computing
Sachdeva R., 2019, Rare microbes from diverse earth biomes dominate community activity, bioRxiv, 636373
Shenhav L., 2019, FEAST: Fast expectation‐maximization for microbial source tracking, Nature Methods, 1
Stan Development Team. (2018).rstan: the R interface tostan. R package version 2.17.3.http://mc-stan.org
Tang Z.‐Z., 2018, Zero‐inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis, Biostatistics, 00, 1
Tourlousse D. M., 2017, Synthetic spike‐in standards for high‐throughput 16s rRNA gene amplicon sequencing, Nucleic Acids Research, 45, e23
Wang Y. Naumann U. Eddelbuettel D. Wilshire J. Warton D. Byrnes J. …Wright S.(2019).mvabund: statistical methods for analysing multivariate abundance data. R package version 4.0.1.https://CRAN.R-project.org/package=mvabund