Diluted magnetic semiconductors: An interface of semiconductor physics and magnetism (invited)

Journal of Applied Physics - Tập 53 Số 11 - Trang 7637-7643 - 1982
J. K. Furdyna1
1Physics Department, Purdue University, West Lafayette, Indiana 47907

Tóm tắt

This paper reviews the electrical, magnetic, and optical properties of diluted magnetic semiconductors (sometimes also referred to as ‘‘semimagnetic’’ semiconductors). These materials are ternary semiconductor alloys whose lattice is made up in part of substitutional magnetic ions. Cd1−xMnxTe and Hg1−xMnxTe are examples of such systems. As semiconductors, these alloys display interesting and important properties, such as the variation of the energy gap and of effective mass with composition. They also exhibit magnetic properties which are interesting in their own right, e.g., a low temperature spin glass transition and magnon excitations. Most importantly, however, the presence of substitutional magnetic ions in these alloys leads to spin–spin exchange interaction between the localized magnetic moments and the band electrons. This in turn has rather important consequences on band structure and on donor and acceptor states, leading to dramatic effects in quantum transport, impurity conduction, and magneto-optics. Specifically, the presence of exchange interaction results in extremely large and temperature dependent g-factors of electrons and holes; in gigantic values of Faraday rotation; in anomalously large negative magnetoresistance; and in the formation of the bound magnetic polaron.

Từ khóa


Tài liệu tham khảo

1982, J. Vac. Sci. and Technol., 21, 220, 10.1116/1.571720

1978, Prog. Cryst. Growth and Charact., 1, 289, 10.1016/0146-3535(78)90004-7

1981, J. Appl. Phys., 52, 4189, 10.1063/1.329233

1978, J. Phys. (Paris), 39, 87, 10.1051/jphys:0197800390108700

1977, Phys. Stat. Solidi B, 79, 585, 10.1002/pssb.2220790223

1981, Phys. Rev. B, 24, 1961, 10.1103/PhysRevB.24.1961

1980, Phys. Rev. B, 22, 3344, 10.1103/PhysRevB.22.3344

1980, Phys. Rev. B, 22, 3331, 10.1103/PhysRevB.22.3331

1980, Solid State Commun., 35, 539, 10.1016/0038-1098(80)90892-3

1980, Solid State Commun., 37, 19

1977, Physica, 86–88B, 419

1977, J. Mag. Mat. Mat., 6, 223, 10.1016/0304-8853(77)90115-9

1937, Phys. Stat. Sol. (b), 58, 685

1970, Phys. Stat. Solidi, 10, 207

1979, Solid State Commun., 29, 435

1981, Phys. Rev. B, 24, 355

1970, J. Phys., 10, L353

1982, Phys. Rev. B, 25, 4674, 10.1103/PhysRevB.25.4674

1975, J. Phys. F, 5, 2148, 10.1088/0305-4608/5/11/027

1966, Phys. Rev., 146, 575, 10.1103/PhysRev.146.575

1973, Phys. Rev. B, 8, 3811, 10.1103/PhysRevB.8.3811

1979, J. Mag. and Mag. Mat., 11, 157, 10.1016/0304-8853(79)90255-5

1981, J. Phys. C, 14, 5689, 10.1088/0022-3719/14/36/012

1978, Solid State Commun., 27, 1233, 10.1016/0038-1098(78)91149-3

1977, Phys. Rev. B, 16, 3603, 10.1103/PhysRevB.16.3603

1979, Phys. Status Solidi B, 95, 359, 10.1002/pssb.2220950205

1978, Phys. Stat. Solidi B, 88, 73, 10.1002/pssb.2220880108

1978, Phys. Status Solidi (b), 89, 655, 10.1002/pssb.2220890241

1978, Solid State Commun., 25, 193, 10.1016/0038-1098(78)91477-1

1980, J. Phys. Soc. Japan, 49, 807, 10.1143/JPSJ.49.807

1966, Proc. Phys. Soc., 87, 809, 10.1088/0370-1328/87/3/325

1981, Phys. Rev. Lett., 46, 735, 10.1103/PhysRevLett.46.735

1980, J. Phys. Japan, 49

1982, Phys. Rev. Lett., 48, 355, 10.1103/PhysRevLett.48.355

1980, J. de Physique, 41, C5

1979, Phys. Status Solidi (b), 96, 735, 10.1002/pssb.2220960230

1980, Phys. Rev. B, 22, 2132, 10.1103/PhysRevB.22.2132

1980, Solid State Commun., 35, 187

1974, Solid State Commun., 15, 1459, 10.1016/0038-1098(74)91402-1

1977, Phys. Rev. B, 15, 844, 10.1103/PhysRevB.15.844

1981, J. Crystal Growth, 52, 614, 10.1016/0022-0248(81)90350-X