Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains

Forschung auf dem Gebiet des Ingenieurwesens A - Tập 85 Số 2 - Trang 273-286 - 2021
Farid Khazaeli Moghadam1, Geraldo F. de S. Rebouças1, Amir R. Nejad1
1Norwegian University of Science and Technology, Trondheim, Norway

Tóm tắt

AbstractThis paper presents a multi-degree of freedom torsional model of drivetrain system as the digital twin model for monitoring the remaining useful lifetime of the drivetrain components. An algorithm is proposed for the model identification, which receives the torsional response and estimated values of rotor and generator torques, and calculates the drivetrain dynamic properties, e.g. eigenvalues, and torsional model parameters. The applications of this model in prediction of gearbox remaining useful lifetime is discussed. The proposed method is computationally fast, and can be implemented by integrating with the current turbine control and monitoring system without a need for a new system and sensors installation. A test case, using 5 MW reference drivetrain, has been demonstrated.

Từ khóa


Tài liệu tham khảo

Pfaffel S, Faulstich S, Rohrig K (2017) Performance and reliability of wind turbines: a review. energies 10(11):1904

Moghadam FK, Nejad AR (2019) Evaluation of PMSG-based drivetrain technologies for 10 MW floating offshore wind turbines: pros and cons in a life-cycle perspective. Wind Energy. https://doi.org/10.1002/we.2499

Goossens P (2017) Industry 4.0 and the power of the digital twin. Retrieved 5(3):2017

Maldonado-Correa J, Martín-Martínez S, Artigao E, Gómez-Lázaro E (2020) Using SCADA data for wind turbine condition monitoring: a systematic literature review. Energies 13(12):3132

Snieckus D (2019) Siemens Gamesa unveils digitally souped-up 11MW offshore turbine. https://www.rechargenews.com/wind/siemens-gamesa-unveils-digitally-souped-up-11mw-offshore-turbine/2-1-711795. Accessed: 27 Nov 2019

Johansen SS, Nejad AR (2019) On digital twin condition monitoring approach for drivetrains in marine applications. In: International Conference on Offshore Mechanics and Arctic Engineering, vol 10. Ocean Renewable Energy. ASME, New York

Rebouças GFS, Nejad AR (2020) On down-scaled modelling of wind turbine drivetrains. J Phys Conf Ser 1618(5):52008

Khazaeli Moghadam F, Nejad AR (2020) Natural frequency estimation by using torsional response, and applications for wind turbine drivetrain fault diagnosis. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1618/2/022019

Gorla C, Rosa F, Conrado E, Albertini H (2014) Bending and contact fatigue strength of innovative steels for large gears. Proc Inst Mech Eng Part C J Mech Eng Sci 228(14):2469–2482

Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical report no. NREL/TP-500-38060. U.S. National Renewable Energy Laboratory, Golden

Nejad AR, Bachynski EE, Moan T (2019) Effect of axial acceleration on drivetrain responses in a spar-type floating wind turbine. J Offshore Mech Arct Eng. https://doi.org/10.1115/1.4041996

Nejad AR, Guo Y, Gao Z, Moan T (2016) Development of a 5 MW reference gearbox for offshore wind turbines. Wind Energy 19(6):1089–1106

Kahraman A (1994) Natural modes of planetary gear trains. J Sound Vib 173(1):125–130

ISO6336‑2 (2006) Calculation of load capacity of spur and helical gears, part 2: calculation of surface durability (pitting). International Organization for Standardization, Geneva

Pilanci M, Arikan O, Pinar MC (2010) Structured least squares problems and robust estimators. IEEE Trans Signal Process 58(5):2453–2465

Golub GH, Van Loan C (1979) Unsymmetric positive definite linear systems. Linear Algebra Appl 28:85–97

Nejad AR, Gao Z, Moan T (2014) On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains. Int J Fatigue 61:116–128

Downing SD, Socie DF (1982) Simple rainflow counting algorithms. Int J Fatigue 4(1):31–40

Manwell JF, McGowan JG, Rogers AL (2010) Wind energy explained: theory, design and application. John Wiley & Sons, United States

Liang X, Zhang H, Liu L, Zuo MJ (2016) The influence of tooth pitting on the mesh stiffness of a pair of external spur gears. Mech Mach Theory 106:1–15

Lei Y, Liu Z, Wang D, Yang X, Liu H, Lin J (2018) A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears. Mech Syst Signal Process 106:355–366

Liu J, Wang C, Wu W (2020) Research on meshing stiffness and vibration response of pitting fault gears with different degrees. Int J Rotating Mach. https://doi.org/10.1155/2020/4176430

Moghadam FK, Nejad AR (2020) Theoretical and experimental study of wind turbine drivetrain fault diagnosis by using torsional vibrations and modal estimation. J Sound Vib. (Under review)

Moghadam FK, Nejad AR (2020) Online condition monitoring of floating wind turbines drivetrain by using digital twin modeling approach. J Mech Syst Signal Process. (Under review)

Xu W, Chen W, Liang Y (2018) Feasibility study on the least square method for fitting non-Gaussian noise data. Phys A Stat Mech Appl 492:1917–1930

Duda KR, Prasov Z, York SP, West JJ, Robinson SK, Handley PM (2015) Development of an integrated simulation platform for real-time task performance assessment. In: 2015 IEEE Aerospace Conference. IEEE, , pp 1–9, New York City

Pratap V, Xu Q, Kahn J, Avidov G, Likhomanenko T, Hannun A, Collobert R et al (2020) Scaling up online speech recognition using convnets. arXiv:2001.09727