Diffusion‐limited binding explains binary dose response for local arterial and tumour drug delivery

Cell Proliferation - Tập 42 Số 3 - Trang 348-363 - 2009
Abraham R. Tzafriri1, A. Levin1, Elazer R. Edelman2,1
1Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts USA;

Tóm tắt

AbstractBackground:  Local drug delivery has transformed medicine, yet it remains unclear how drug efficacy depends on physicochemical properties and delivery kinetics. Most therapies seek to prolong release, yet recent studies demonstrate sustained clinical benefit following local bolus endovascular delivery.Objectives:  The purpose of the current study was to examine interplay between drug dose, diffusion and binding in determining tissue penetration and effect.Methods:  We introduce a quantitative framework that balances dose, saturable binding and diffusion, and measured the specific binding parameters of drugs to target tissues.Results:  Model reduction techniques augmented by numerical simulations revealed that impact of saturable binding on drug transport and retention is determined by the magnitude of a binding potential, Bp, ratio of binding capacity to product of equilibrium dissociation constant and accessible tissue volume fraction. At low Bp (< 1), drugs are predominantly free and transport scales linearly with concentration. At high Bp (> 40), drug transport exhibits threshold dependence on applied surface concentration.Conclusions:  In this paradigm, drugs and antibodies with large Bp penetrate faster and deeper into tissues when presented at high concentrations. Threshold dependence of tissue transport on applied surface concentration of paclitaxel and rapamycin may explain threshold dose dependence of in vivo biological efficacy of these drugs.

Từ khóa


Tài liệu tham khảo

10.1161/01.CIR.0000047700.58683.A1

10.1056/NEJMoa035071

10.1211/0022357021778268

10.1200/JCO.2003.05.099

10.1016/j.addr.2006.01.016

10.1161/01.RES.86.8.879

10.1002/jps.1085

10.1016/j.addr.2006.01.023

10.1161/01.CIR.0000050367.65079.71

10.1016/j.jacc.2005.03.069

10.1161/01.CIR.0000138929.71660.E0

10.1016/S0735-1097(03)01056-8

10.1056/NEJMoa061254

10.1073/pnas.0400918101

10.1016/0168-3659(94)90221-6

Graff CP, 2003, Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention, Cancer Res, 63, 1288

10.1080/1061186021000038382

10.1016/0026-2862(91)90003-T

10.1002/ana.410150302

10.1161/01.CIR.0000109694.58299.A0

10.1161/CIRCULATIONAHA.106.623470

Lovich MA, 1996, Computational simulations of local vascular heparin deposition and distribution, Am. J. Physiol, 271, H2014

10.1016/S0006-3495(02)75208-9

10.1056/NEJMoa0706356

10.1016/S0006-3495(96)79719-9

10.1161/hc3101.092214

Fujimori K, 1990, A modeling analysis of monoclonal antibody percolation through tumors: a binding–site barrier, J. Nucl. Med, 31, 1191

Adams GP, 2001, High affinity restricts the localization and tumor penetration of single‐chain fv antibody molecules, Cancer Res, 61, 4750

10.1016/0735-1097(94)90616-5

Crank J, 1975, The Mathematics of Diffusion

10.1016/S0376-7388(00)82256-5

10.1002/1097-0215(20001215)88:6<962::AID-IJC20>3.0.CO;2-U

Krol A, 1999, Available volume fraction of macromolecules in the extravascular space of a fibrosarcoma: implications for drug delivery, Cancer Res, 59, 4136

10.1114/1.1424915

10.1038/nm0103-135

10.1046/j.1540-8183.2003.01050.x

10.1093/eurheartj/ehi752

10.1016/S0735-1097(00)01020-2

10.1161/01.CIR.0000109137.51122.49

10.1016/j.jconrel.2007.06.025

10.1074/jbc.274.8.5236

10.1042/BJ20060756

10.1177/004051755202201209

Carslaw HS, 1959, Conduction of Heat in Solids