Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging
Tóm tắt
Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.
Tài liệu tham khảo
Thesleff I, Mikkola M: The role of growth factors in tooth development. Int Rev Cytol. 2002, 217: 93-135. full_text.
Smith AJ, Lesot H: Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair?. Crit Rev Oral Biol Med. 2001, 12 (5): 425-437. 10.1177/10454411010120050501.
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP: Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005, 15 (5): 301-316. 10.1038/sj.cr.7290299.
Yu J, Shi J, Jin Y: Current Approaches and Challenges in Making a Bio-Tooth. Tissue Eng Part B Rev. 2008, 14 (3): 307-319. 10.1089/ten.teb.2008.0165.
Pispa J, Thesleff I: Mechanisms of ectodermal organogenesis. Dev Biol. 2003, 262 (2): 195-205. 10.1016/S0012-1606(03)00325-7.
Hu B, Nadiri A, Bopp-Küchler S, Perrin-Schmitt F, Lesot H: Dental epithelial histomorphogenesis in vitro. J Dent Res. 2005, 84 (6): 521-525. 10.1177/154405910508400607.
Yu JH, Shi JN, Deng ZH, Zhuang H, Nie X, Wang RN, Jin Y: Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun. 2006, 346 (1): 116-124. 10.1016/j.bbrc.2006.05.096.
Yu JH, Deng ZH, Shi JN, Zhai HH, Nie X, Zhuang H, Li YC, Jin Y: Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng. 2006, 12 (11): 3097-3105. 10.1089/ten.2006.12.3097.
Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S: Stem cell properties of human dental pulp stem cells. J Dent Res. 2002, 81 (8): 531-535. 10.1177/154405910208100806.
Huang GT, Gronthos S, Shi S: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009, 88 (9): 792-806. 10.1177/0022034509340867.
Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, Formstecher P, Bailliez Y, Polakowska RR: Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev. 2008, 17 (6): 1175-1184. 10.1089/scd.2008.0012.
d'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G: Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ. 2007, 14 (6): 1162-1171. 10.1038/sj.cdd.4402121.
Komori T: Regulation of osteoblast differentiation by runx2. Adv Exp Med Biol. 2010, 658: 43-49. full_text.
Laino G, d'Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G: A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res. 2005, 20 (8): 1394-1402. 10.1359/JBMR.050325.
Laino G, Graziano A, d'Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G: An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol. 2006, 206 (3): 693-701. 10.1002/jcp.20526.
Papaccio G, Graziano A, d'Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G: Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol. 2006, 208 (2): 319-325. 10.1002/jcp.20667.
d'Aquino R, Papaccio G, Laino G, Graziano A: Dental Pulp Stem Cells: A Promising Tool for Bone Regeneration. Stem Cell Rev. 2008, 4 (1): 21-26. 10.1007/s12015-008-9013-5.
Shi S, Gronthos S: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003, 18 (4): 696-704. 10.1359/jbmr.2003.18.4.696.
Yang X, Walboomers XF, Beucken van den JJ, Bian Z, Fan M, Jansen JA: Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A. 2009, 15 (2): 367-375. 10.1089/ten.tea.2008.0133.
Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y: Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007, 99 (8): 465-474. 10.1042/BC20070013.
Nagano T, Oida S, Ando H, Gomi K, Arai T, Fukae M: Relative levels of mRNA encoding enamel proteins in enamel organ epithelia and odontoblasts. J Dent Res. 2003, 82 (12): 982-986. 10.1177/154405910308201209.
Ruch JV: Odontoblast commitment and differentiation. Biochem Cell Biol. 1998, 76 (6): 923-938. 10.1139/bcb-76-6-923.
Ema H, Takano H, Sudo K, Nakauchi H: In vitro self-renewal division of hematopoietic stem cells. J Exp Med. 2000, 192 (9): 1281-1288. 10.1084/jem.192.9.1281.
Kikuchi H, Suzuki K, Sakai N, Yamada S: Odontoblasts induced from mesenchymal cells of murine dental papillae in three-dimensional cell culture. Cell Tissue Res. 2004, 317 (2): 173-185. 10.1007/s00441-004-0882-x.
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000, 97 (25): 13625-13630. 10.1073/pnas.240309797.
Patterson MK: Measurement of growth and viability of cells in culture. Methods Enzymol. 1979, 58: 141-152. full_text.
Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S, Wang CY: BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol. 2009, 11 (8): 1002-1009. 10.1038/ncb1913.