Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor

Molecular Pain - Tập 8 - Trang 1-11 - 2012
Richard P Hulse1,2, Lucy F Donaldson1, David Wynick1,2
1School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK
2School of Clinical Sciences, University Walk, Bristol, UK

Tóm tắt

Galanin is expressed in a small percentage of intact small diameter sensory neurons of the dorsal root ganglia and in the afferent terminals of the superficial lamina of the dorsal horn of the spinal cord. The neuropeptide modulates nociception demonstrating dose-dependent pro- and anti-nociceptive actions in the naïve animal. Galanin also plays an important role in chronic pain, with the anti-nociceptive actions enhanced in rodent neuropathic pain models. In this study we compared the role played by galanin and its receptors in mechanical and cold allodynia by identifying individual rat C-fibre nociceptors and characterising their responses to mechanical or acetone stimulation. Mechanically evoked responses in C-fibre nociceptors from naive rats were sensitised after close intra-arterial infusion of galanin or Gal2-11 (a galanin receptor-2/3 agonist) confirming previous data that galanin modulates nociception via activation of GalR2. In contrast, the same dose and route of administration of galanin, but not Gal2-11, inhibited acetone and menthol cooling evoked responses, demonstrating that this inhibitory mechanism is not mediated by activation of GalR2. We then used the partial saphenous nerve ligation injury model of neuropathic pain (PSNI) and the complete Freund’s adjuvant model of inflammation in the rat and demonstrated that close intra-arterial infusion of galanin, but not Gal2-11, reduced cooling evoked nociceptor activity and cooling allodynia in both paradigms, whilst galanin and Gal2-11 both decreased mechanical activation thresholds. A previously described transgenic mouse line which inducibly over-expresses galanin (Gal-OE) after nerve injury was then used to investigate whether manipulating the levels of endogenous galanin also modulates cooling evoked nociceptive behaviours after PSNI. Acetone withdrawal behaviours in naive mice showed no differences between Gal-OE and wildtype (WT) mice. 7-days after PSNI Gal-OE mice demonstrated a significant reduction in the duration of acetone-induced nociceptive behaviours compared to WT mice. These data identify a novel galaninergic mechanism that inhibits cooling evoked neuronal activity and nociceptive behaviours via a putative GalR1 mode of action that would also be consistent with a TRP channel-dependent mechanism.

Tài liệu tham khảo

Villar MJ, Cortes R, Theodorsson E, Wiesenfeld HZ, Schalling M, Fahrenkrug J, Emson PC, Hokfelt T: Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 1989, 33: 587–604. 10.1016/0306-4522(89)90411-9 Hokfelt T, Wiesenfeld HZ, Villar M, Melander T: Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci Lett 1987, 83: 217–220. 10.1016/0304-3940(87)90088-7 Hulse R, Wynick D, Donaldson LF: Activation of the galanin receptor 2 in the periphery reverses nerve injury-induced allodynia. Mol Pain 2011, 7: 26. 10.1186/1744-8069-7-26 Wiesenfeld-Hallin Z, Villar MJ, Hokfelt T: The effects of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain Res 1989, 486: 205–213. 10.1016/0006-8993(89)90506-4 Hulse RP, Donaldson LF, Wynick D: Peripheral galanin receptor 2 as a target for the modulation of pain. Pain Res Treat 2012, 2012: 545386. Wiesenfeld HZ, Xu XJ, Langel U, Bedecs K, Hokfelt T, Bartfai T: Galanin-mediated control of pain: enhanced role after nerve injury. Proc Natl Acad Sci USA 1992, 89: 3334–3337. 10.1073/pnas.89.8.3334 Liu HX, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hokfelt T: Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: Selective actions via GalR1 and GalR2 receptors. Proc Natl Acad Sci USA 2001, 98: 9960–9964. 10.1073/pnas.161293598 Hao JX, Shi TJ, Xu IS, Kaupilla T, Xu XJ, Hokfelt T, Bartfai T, Wiesenfeld HZ: Intrathecal galanin alleviates allodynia-like behaviour in rats after partial peripheral nerve injury. European Journal Of Neuroscience 1999, 11: 427–432. 10.1046/j.1460-9568.1999.00447.x Kerekes N, Mennicken F, O'Donnell D, Hokfelt T, Hill RH: Galanin increases membrane excitability and enhances Ca(2+) currents in adult, acutely dissociated dorsal root ganglion neurons. Eur J Neurosci 2003,18(11):2957–2966. 10.1111/j.1460-9568.2003.03057.x Sten Shi TJ, Zhang X, Holmberg K, Xu ZQ, Hokfelt T: Expression and regulation of galanin-R2 receptors in rat primary sensory neurons: effect of axotomy and inflammation. Neurosci Lett 1997, 237: 57–60. 10.1016/S0304-3940(97)00805-7 Xu ZQ, Shi TJ, Landry M, Hokfelt T: Evidence for galanin receptors in primary sensory neurones and effect of axotomy and inflammation. Neuroreport 1996, 8: 237–242. 10.1097/00001756-199612200-00048 Brumovsky P, Mennicken F, O'Donnell D, Hokfelt T: Differential distribution and regulation of galanin receptors- 1 and −2 in the rat lumbar spinal cord. Brain Res 2006, 1085: 111–120. 10.1016/j.brainres.2006.02.088 Waters SM, Krause JE: Distribution of galanin-1, -2 and −3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 2000, 95: 265–271. Hobson SA, Holmes FE, Kerr NCH, Pope RJ, Wynick D: Mice deficient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour. J Neurochem 2006, 99: 1000–1010. 10.1111/j.1471-4159.2006.04143.x Mennicken F, Hoffert C, Pelletier M, Ahmad S, O'Donnell D: Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J Chem Neuroanat 2002, 24: 257–268. 10.1016/S0891-0618(02)00068-6 Blakeman KH, Hao JX, Xu XJ, Jacoby AS, Shine J, Crawley JN, Iismaa T, Wiesenfeld-Hallin Z: Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors. Neuroscience 2003, 117: 221–227. 10.1016/S0306-4522(02)00779-0 Heppelmann B, Just S, Pawlak M: Galanin influences the mechanosensitivity of sensory endings in the rat knee joint. European Journal Of Neuroscience 2000, 12: 1567–1572. 10.1046/j.1460-9568.2000.00045.x Ji G, Zhou S, Carlton SM: Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience 2008, 154: 1054–1066. 10.1016/j.neuroscience.2008.04.039 Leem JW, Willis WD, Chung JM: Cutaneous sensory receptors in the rat foot. J Neurophysiol 1993, 69: 1684–1699. Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A: Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci 2008, 28: 9640–9651. 10.1523/JNEUROSCI.2772-08.2008 Holmes FE, Bacon A, Pope RJ, Vanderplank PA, Kerr NC, Sukumaran M, Pachnis V, Wynick D: Transgenic overexpression of galanin in the dorsal root ganglia modulates pain-related behavior. Proc Natl Acad Sci USA 2003, 100: 6180–6185. 10.1073/pnas.0937087100 Attal N, Bouhassira D, Gautron M, Vaillant JN, Mitry E, Lepere C, Rougier P, Guirimand F: Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. Pain 2009, 144: 245–252. 10.1016/j.pain.2009.03.024 Serra J, Sola R, Quiles C, Casanova-Molla J, Pascual V, Bostock H, Valls-Sole J: C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain 2009, 147: 46–53. 10.1016/j.pain.2009.07.028 Vilholm OJ, Cold S, Rasmussen L, Sindrup SH: Sensory function and pain in a population of patients treated for breast cancer. Acta Anaesthesiol Scand 2009, 53: 800–806. 10.1111/j.1399-6576.2009.01938.x Choi Y, Yoon YW, Na HS, Kim SH, Chung JM: Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 1994, 59: 369–376. 10.1016/0304-3959(94)90023-X Egashira N, Hirakawa S, Kawashiri T, Yano T, Ikesue H, Oishi R: Mexiletine reverses oxaliplatin-induced neuropathic pain in rats. J Pharmacol Sci 2010, 112: 473–476. 10.1254/jphs.10012SC Datta S, Chatterjee K, Kline RH, Wiley RG: Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli. Mol Pain 2010, 6: 7. 10.1186/1744-8069-6-7 Caspani O, Zurborg S, Labuz D, Heppenstall PA: The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One 2009, 4: e7383. 10.1371/journal.pone.0007383 Kuhtz-Buschbeck JP, Andresen W, Gobel S, Gilster R, Stick C: Thermoreception and nociception of the skin: a classic paper of Bessou and Perl and analyses of thermal sensitivity during a student laboratory exercise. Adv Physiol Educ 2010, 34: 25–34. 10.1152/advan.00002.2010 Kelly KG, Cook T, Backonja MM: Pain ratings at the thresholds are necessary for interpretation of quantitative sensory testing. Muscle Nerve 2005, 32: 179–184. 10.1002/mus.20355 Davis KD, Pope GE: Noxious cold evokes multiple sensations with distinct time courses. Pain 2002, 98: 179–185. 10.1016/S0304-3959(02)00043-X Meier PM, Berde CB, DiCanzio J, Zurakowski D, Sethna NF: Quantitative assessment of cutaneous thermal and vibration sensation and thermal pain detection thresholds in healthy children and adolescents. Muscle Nerve 2001, 24: 1339–1345. 10.1002/mus.1153 Harrison JL, Davis KD: Cold-evoked pain varies with skin type and cooling rate: a psychophysical study in humans. Pain 1999, 83: 123–135. 10.1016/S0304-3959(99)00099-8 Chen CC, Rainville P, Bushnell MC: Noxious and innocuous cold discrimination in humans: evidence for separate afferent channels. Pain 1996, 68: 33–43. 10.1016/S0304-3959(96)03180-6 Binder A, Stengel M, Maag R, Wasner G, Schoch R, Moosig F, Schommer B, Baron R: Pain in oxaliplatin-induced neuropathy–sensitisation in the peripheral and central nociceptive system. Eur J Cancer 2007, 43: 2658–2663. 10.1016/j.ejca.2007.07.030 Fleetwood-Walker SM, Proudfoot CW, Garry EM, Allchorne A, Vinuela-Fernandez I, Mitchell R: Cold comfort pharm. Trends Pharmacol Sci 2007, 28: 621–628. 10.1016/j.tips.2007.10.007 Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM: Roles of transient receptor potential channels in pain. Brain Res Rev 2009, 60: 2–23. 10.1016/j.brainresrev.2008.12.018 McKemy DD: How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 2005, 1: 16. 10.1186/1744-8069-1-16 Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD: TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 2010, 150: 340–350. 10.1016/j.pain.2010.05.021 Dunham JP, Leith JL, Lumb BM, Donaldson LF: Transient receptor potential channel A1 and noxious cold responses in rat cutaneous nociceptors. Neuroscience 2010, 165: 1412–1419. 10.1016/j.neuroscience.2009.11.065 Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K: Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 2005, 493: 596–606. 10.1002/cne.20794 Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, et al.: A TRP channel that senses cold stimuli and menthol. Cell 2002, 108: 705–715. 10.1016/S0092-8674(02)00652-9 Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM: More than cool: promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 2006, 32: 335–343. 10.1016/j.mcn.2006.05.005 Sherkheli MA, Gisselmann G, Vogt-Eisele AK, Goerner JF, Hatt H: Menthol derivative WS-12 selectively activates transient receptor potential melastatin-8 (TRPM8) ion channels. Pak J Pharm Sci 2008, 21: 370–378. Lu X, Lundstrom L, Bartfai T: Galanin (2–11) binds to GalR3 in transfected cell lines: limitations for pharmacological definition of receptor subtypes. Neuropeptides 2005, 39: 165–167. 10.1016/j.npep.2004.12.013 Holst JJ, Bersani M, Hvidberg A, Knigge U, Christiansen E, Madsbad S, Harling H, Kofod H: On the effects of human galanin in man. Diabetologia 1993, 36: 653–657. 10.1007/BF00404076 Jimenez-Andrade JM, Zhou S, Yamani A, de Ita SV, Castaneda-Hernandez G, Carlton SM: Mechanism by which peripheral galanin increases acute inflammatory pain. Brain Res 2005, 1056: 113–117. 10.1016/j.brainres.2005.07.007 Jimenez-Andrade JM, Zhou S, Du J, Yamani A, Grady JJ, Castaneda-Hernandez G, Carlton SM: Pro-nociceptive role of peripheral galanin in inflammatory pain. Pain 2004, 110: 10–21. 10.1016/j.pain.2004.02.032 Habert-Ortoli E, Amiranoff B, Loquet I, Laburthe M, Mayaux JF: Molecular cloning of a functional human galanin receptor. Proc Natl Acad Sci USA 1994, 91: 9780–9783. 10.1073/pnas.91.21.9780 Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yao WJ, Vaysse PJ, Branchek TA, Gerald C, et al.: Cloned human and rat galanin GALR3 receptors. Pharmacology and activation of G-protein inwardly rectifying K + channels. J Biol Chem 1998, 273: 23321–23326. 10.1074/jbc.273.36.23321 Wittau N, Grosse R, Kalkbrenner F, Gohla A, Schultz G, Gudermann T: The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins. Oncogene 2000, 19: 4199–4209. 10.1038/sj.onc.1203777 Bavencoffe A, Gkika D, Kondratskyi A, Beck B, Borowiec AS, Bidaux G, Busserolles J, Eschalier A, Shuba Y, Skryma R, et al.: The transient receptor potential channel TRPM8 is inhibited via the alpha 2A adrenoreceptor signaling pathway. J Biol Chem 2010, 285: 9410–9419. 10.1074/jbc.M109.069377 Gee MD, Lynn B, Basile S, Pierau FK, Cotsell B: The relationship between axonal spike shape and functional modality in cutaneous C-fibres in the pig and rat. Neuroscience 1999, 90: 509–518. 10.1016/S0306-4522(98)00454-0 Dina OA, Parada CA, Yeh J, Chen X, McCarter GC, Levine JD: Integrin signaling in inflammatory and neuropathic pain in the rat. European Journal Of Neuroscience 2004, 19: 634–642. 10.1111/j.1460-9568.2004.03169.x Colburn RW, Lubin ML, Stone DJ, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N: Attenuated cold sensitivity in TRPM8 null mice. Neuron 2007, 54: 379–386. 10.1016/j.neuron.2007.04.017 Leith JL, Koutsikou S, Lumb BM, Apps R: Spinal processing of noxious and innocuous cold information: differential modulation by the periaqueductal gray. J Neurosci 2010, 30: 4933–4942. 10.1523/JNEUROSCI.0122-10.2010 Hulse R, Wynick D, Donaldson LF: Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia. Eur J Pain 2010, 14: 1–10. 10.1016/j.ejpain.2009.11.002 Hensel H, Zotterman Y: The response of mechanoreceptors to thermal stimulation. J Physiol 1951, 115: 16–24. Hensel H, Iggo A, Witt I: A quantitative study of sensitive cutaneous thermoreceptors with C afferent fibres. J Physiol 1960, 153: 113–126. Dunham JP, Kelly S, Donaldson LF: Inflammation reduces mechanical thresholds in a population of transient receptor potential channel A1-expressing nociceptors in the rat. European Journal Of Neuroscience 2008, 27: 3151–3160. 10.1111/j.1460-9568.2008.06256.x Harling H, Holst JJ: Circulating galanin: origin, metabolism, and pharmacokinetics in anesthetized pigs. Am J Physiol 1992, 262: E52-E57. Hulse R, Wynick D, Donaldson LF: Characterization of a novel neuropathic pain model in mice. Neuroreport 2008, 19: 825–829. 10.1097/WNR.0b013e328300ee0a Walczak JS, Pichette V, Leblond F, Desbiens K, Beaulieu P: Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: a new model of neuropathic pain. Neuroscience 2005, 132: 1093–1102. 10.1016/j.neuroscience.2005.02.010 Donaldson LF, Seckl JR, McQueen DS: A discrete adjuvant-induced monoarthritis in the rat: effects of adjuvant dose. J Neurosci Methods 1993, 49: 5–10. 10.1016/0165-0270(93)90103-X